diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvv2/n4.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'fvv2/n4.lyx')
| -rw-r--r-- | fvv2/n4.lyx | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/fvv2/n4.lyx b/fvv2/n4.lyx index 2db00c5..ada1c91 100644 --- a/fvv2/n4.lyx +++ b/fvv2/n4.lyx @@ -103,11 +103,11 @@ Dados dos espacios medibles rectángulo medible \series default en -\begin_inset Formula $\Omega:=\Omega_{1}\times\Omega_{2}$ +\begin_inset Formula $\Omega\coloneqq \Omega_{1}\times\Omega_{2}$ \end_inset a los elementos de -\begin_inset Formula ${\cal R}:=\{A\times B\}_{A\in\Sigma_{1},B\in\Sigma_{2}}$ +\begin_inset Formula ${\cal R}\coloneqq \{A\times B\}_{A\in\Sigma_{1},B\in\Sigma_{2}}$ \end_inset . @@ -124,7 +124,7 @@ rectángulo medible \end_inset a -\begin_inset Formula $\Sigma:=\Sigma_{1}\times\Sigma_{2}:=\sigma({\cal R})$ +\begin_inset Formula $\Sigma\coloneqq \Sigma_{1}\times\Sigma_{2}\coloneqq \sigma({\cal R})$ \end_inset . @@ -224,11 +224,11 @@ medida imagen \end_inset a la medida -\begin_inset Formula $\nu:=\mu g^{-1}:\Sigma'\rightarrow[0,+\infty]$ +\begin_inset Formula $\nu\coloneqq \mu g^{-1}:\Sigma'\rightarrow[0,+\infty]$ \end_inset dada por -\begin_inset Formula $\nu(A):=\mu(g^{-1}(A))$ +\begin_inset Formula $\nu(A)\coloneqq \mu(g^{-1}(A))$ \end_inset . @@ -360,7 +360,7 @@ teorema \end_inset es acotada y -\begin_inset Formula $D(f):=\{x\in[a,b]\mid f\text{ es discontinua en }x\}$ +\begin_inset Formula $D(f)\coloneqq \{x\in[a,b]\mid f\text{ es discontinua en }x\}$ \end_inset , entonces @@ -450,11 +450,11 @@ función de distribución \end_inset a -\begin_inset Formula $F(x):=\mu(\{f\leq x\})$ +\begin_inset Formula $F(x)\coloneqq \mu(\{f\leq x\})$ \end_inset o a -\begin_inset Formula $\varphi(x):=\mu(\{f>x\})=\mu(\Omega)-F(x)$ +\begin_inset Formula $\varphi(x)\coloneqq \mu(\{f>x\})=\mu(\Omega)-F(x)$ \end_inset . @@ -463,11 +463,11 @@ función de distribución \end_inset una variable aleatoria, -\begin_inset Formula $F(x):=\mu(\{f\leq x\})$ +\begin_inset Formula $F(x)\coloneqq \mu(\{f\leq x\})$ \end_inset y -\begin_inset Formula $\varphi(x):=\mu(\{f>x\})$ +\begin_inset Formula $\varphi(x)\coloneqq \mu(\{f>x\})$ \end_inset , entonces @@ -524,7 +524,7 @@ Si \end_inset no es acotada, podemos aplicar este resultado a los conjuntos -\begin_inset Formula $E_{a,b}:=\{a<f\leq b\}$ +\begin_inset Formula $E_{a,b}\coloneqq \{a<f\leq b\}$ \end_inset para @@ -532,7 +532,7 @@ Si \end_inset cualesquiera definiendo -\begin_inset Formula $\mu_{a,b}(E):=\mu(E\cap E_{a,b})$ +\begin_inset Formula $\mu_{a,b}(E)\coloneqq \mu(E\cap E_{a,b})$ \end_inset y usando esta medida. @@ -601,7 +601,7 @@ Si \end_inset es medible con -\begin_inset Formula $\varphi(x):=\mu(\{f>x\})$ +\begin_inset Formula $\varphi(x)\coloneqq \mu(\{f>x\})$ \end_inset y @@ -673,7 +673,7 @@ Llamamos \end_inset , escribimos -\begin_inset Formula ${\cal L}^{p}(\mu):={\cal L}_{\phi}(\mu)$ +\begin_inset Formula ${\cal L}^{p}(\mu)\coloneqq {\cal L}_{\phi}(\mu)$ \end_inset . |
