aboutsummaryrefslogtreecommitdiff
path: root/ga/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ga/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'ga/n3.lyx')
-rw-r--r--ga/n3.lyx88
1 files changed, 44 insertions, 44 deletions
diff --git a/ga/n3.lyx b/ga/n3.lyx
index d3edbf2..55c0a6a 100644
--- a/ga/n3.lyx
+++ b/ga/n3.lyx
@@ -173,7 +173,7 @@ polinomios constantes
\end_inset
e
-\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
+\begin_inset Formula $I[X]\coloneqq \{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
\end_inset
son ideales de
@@ -185,7 +185,7 @@ polinomios constantes
\begin_layout Standard
Dado
-\begin_inset Formula $p:=\sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$
+\begin_inset Formula $p\coloneqq \sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$
\end_inset
, llamamos
@@ -197,7 +197,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p)\coloneqq \max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -321,7 +321,7 @@ Sean
\end_inset
y
-\begin_inset Formula $t:=\max\{m,n\}$
+\begin_inset Formula $t\coloneqq \max\{m,n\}$
\end_inset
, entonces
@@ -901,7 +901,7 @@ función polinómica
\end_inset
dada por
-\begin_inset Formula $\hat{p}(b):=S_{b}(p)$
+\begin_inset Formula $\hat{p}(b)\coloneqq S_{b}(p)$
\end_inset
.
@@ -1210,7 +1210,7 @@ status open
Demostración:
\series default
Para la existencia, basta ver que
-\begin_inset Formula $d:=\mathtt{dividir}$
+\begin_inset Formula $d\coloneqq \mathtt{dividir}$
\end_inset
termina y los valores
@@ -1265,11 +1265,11 @@ Demostración:
\end_inset
, sea
-\begin_inset Formula $p:=\frac{f_{n}}{g_{m}}X^{n-m}$
+\begin_inset Formula $p\coloneqq \frac{f_{n}}{g_{m}}X^{n-m}$
\end_inset
,
-\begin_inset Formula $(q,r):=d(f,acc)=d(f-pg,acc+p)$
+\begin_inset Formula $(q,r)\coloneqq d(f,acc)=d(f-pg,acc+p)$
\end_inset
, pero como
@@ -1570,7 +1570,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
+\begin_inset Formula $m\coloneqq \max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
@@ -1819,7 +1819,7 @@ status open
Demostración:
\series default
Para
-\begin_inset Formula $s:=\sum_{k=1}^{n}\alpha_{k}=1$
+\begin_inset Formula $s\coloneqq \sum_{k=1}^{n}\alpha_{k}=1$
\end_inset
es evidente.
@@ -2059,19 +2059,19 @@ Dado un anillo conmutativo
derivada
\series default
de
-\begin_inset Formula $P:=\sum_{k}a_{k}X^{k}\in A[X]$
+\begin_inset Formula $P\coloneqq \sum_{k}a_{k}X^{k}\in A[X]$
\end_inset
como
-\begin_inset Formula $P':=D(P):=\sum_{k\geq1}ka_{k}X^{k-1}$
+\begin_inset Formula $P'\coloneqq D(P)\coloneqq \sum_{k\geq1}ka_{k}X^{k-1}$
\end_inset
, y escribimos
-\begin_inset Formula $P^{(0)}:=P$
+\begin_inset Formula $P^{(0)}\coloneqq P$
\end_inset
y
-\begin_inset Formula $P^{(n+1)}:=P^{(n)\prime}$
+\begin_inset Formula $P^{(n+1)}\coloneqq P^{(n)\prime}$
\end_inset
.
@@ -2455,7 +2455,7 @@ status open
.
En efecto, sea
-\begin_inset Formula $D:=A[X]$
+\begin_inset Formula $D\coloneqq A[X]$
\end_inset
, es claro que
@@ -2734,7 +2734,7 @@ Si
\end_inset
, sean
-\begin_inset Formula $a:=a_{0}+\dots+a_{n}X^{n},b:=b_{0}+\dots+b_{m}X^{m}\in D[X]$
+\begin_inset Formula $a\coloneqq a_{0}+\dots+a_{n}X^{n},b\coloneqq b_{0}+\dots+b_{m}X^{m}\in D[X]$
\end_inset
tales que
@@ -2886,7 +2886,7 @@ Demostración:
\end_inset
múltiplo común de los denominadores en estos representantes,
-\begin_inset Formula $g:=bG\in D[X]$
+\begin_inset Formula $g\coloneqq bG\in D[X]$
\end_inset
, y si hacemos lo mismo con
@@ -2898,7 +2898,7 @@ Demostración:
\end_inset
con
-\begin_inset Formula $h:=cH\in D[X]$
+\begin_inset Formula $h\coloneqq cH\in D[X]$
\end_inset
.
@@ -2936,16 +2936,16 @@ Demostración:
\end_inset
, podemos tomar
-\begin_inset Formula $g':=(bc)^{-1}g$
+\begin_inset Formula $g'\coloneqq (bc)^{-1}g$
\end_inset
y
-\begin_inset Formula $h':=h$
+\begin_inset Formula $h'\coloneqq h$
\end_inset
.
Si
-\begin_inset Formula $n:=\varphi(bc)>0$
+\begin_inset Formula $n\coloneqq \varphi(bc)>0$
\end_inset
, probado esto para
@@ -3066,7 +3066,7 @@ status open
\end_inset
Primero vemos que todo
-\begin_inset Formula $a:=a_{0}+\dots+a_{n}X^{n}\in D[X]$
+\begin_inset Formula $a\coloneqq a_{0}+\dots+a_{n}X^{n}\in D[X]$
\end_inset
con
@@ -3127,7 +3127,7 @@ Primero vemos que todo
es obvio.
De lo contrario existen
-\begin_inset Formula $b:=b_{0}+\dots+b_{m}X^{m},c:=c_{0}+\dots+c_{k}X^{k}\in D[X]$
+\begin_inset Formula $b\coloneqq b_{0}+\dots+b_{m}X^{m},c\coloneqq c_{0}+\dots+c_{k}X^{k}\in D[X]$
\end_inset
no invertibles ni unidades con
@@ -3469,11 +3469,11 @@ Definimos
\end_inset
tal que, para
-\begin_inset Formula $p:=\sum_{k\geq0}p_{k}X^{k}\in D[X]$
+\begin_inset Formula $p\coloneqq \sum_{k\geq0}p_{k}X^{k}\in D[X]$
\end_inset
,
-\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p)\coloneqq \{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y para
@@ -3489,7 +3489,7 @@ Definimos
\end_inset
,
-\begin_inset Formula $c(p):=a^{-1}c(ap)$
+\begin_inset Formula $c(p)\coloneqq a^{-1}c(ap)$
\end_inset
.
@@ -3747,11 +3747,11 @@ Sea
\end_inset
,
-\begin_inset Formula $n:=n_{i}:=\max_{k}n_{k}\geq1$
+\begin_inset Formula $n\coloneqq n_{i}\coloneqq \max_{k}n_{k}\geq1$
\end_inset
,
-\begin_inset Formula $m:=\text{mcm}_{k}s_{k}$
+\begin_inset Formula $m\coloneqq \text{mcm}_{k}s_{k}$
\end_inset
y
@@ -3874,7 +3874,7 @@ Lema de Gauss:
Demostración:
\series default
-\begin_inset Formula $f':=f/c(f)$
+\begin_inset Formula $f'\coloneqq f/c(f)$
\end_inset
es primitivo, pues
@@ -3882,7 +3882,7 @@ Demostración:
\end_inset
, y análogamente
-\begin_inset Formula $g':=g/c(g)$
+\begin_inset Formula $g'\coloneqq g/c(g)$
\end_inset
es primitivo, luego
@@ -4286,11 +4286,11 @@ Si
\end_inset
,
-\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$
+\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in D[X]$
\end_inset
y
-\begin_inset Formula $n:=\text{gr}(f)$
+\begin_inset Formula $n\coloneqq \text{gr}(f)$
\end_inset
, todas las raíces de
@@ -4519,11 +4519,11 @@ En particular, si
\end_inset
es primo,
-\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$
+\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$
\end_inset
es primitivo,
-\begin_inset Formula $n:=\text{gr}(f)$
+\begin_inset Formula $n\coloneqq \text{gr}(f)$
\end_inset
,
@@ -4559,11 +4559,11 @@ Criterio de Eisenstein:
\end_inset
un DFU,
-\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$
+\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in D[X]$
\end_inset
primitivo y
-\begin_inset Formula $n:=\text{gr}f$
+\begin_inset Formula $n\coloneqq \text{gr}f$
\end_inset
, si existe un irreducible
@@ -4596,7 +4596,7 @@ status open
Demostración:
\series default
Sean
-\begin_inset Formula $g:=b_{0}+\dots+b_{m}X^{m},h:=c_{0}+\dots+c_{k}X^{k}\in D[X]$
+\begin_inset Formula $g\coloneqq b_{0}+\dots+b_{m}X^{m},h\coloneqq c_{0}+\dots+c_{k}X^{k}\in D[X]$
\end_inset
con
@@ -4641,7 +4641,7 @@ Demostración:
\end_inset
, luego existe
-\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$
+\begin_inset Formula $i\coloneqq \min\{j\mid p\nmid b_{j}\}$
\end_inset
y entonces
@@ -4761,7 +4761,7 @@ de 1
\end_inset
, donde
-\begin_inset Formula $\Phi_{n}(X):=X^{n-1}+X^{n-2}+\dots+X+1$
+\begin_inset Formula $\Phi_{n}(X)\coloneqq X^{n-1}+X^{n-2}+\dots+X+1$
\end_inset
es el
@@ -4876,7 +4876,7 @@ anillo de polinomios
\end_inset
como
-\begin_inset Formula $A[X_{1},\dots,X_{n}]:=A[X_{1},\dots,X_{n-1}][X_{n}]$
+\begin_inset Formula $A[X_{1},\dots,X_{n}]\coloneqq A[X_{1},\dots,X_{n-1}][X_{n}]$
\end_inset
.
@@ -4984,7 +4984,7 @@ Dados
\end_inset
e
-\begin_inset Formula $i:=(i_{1},\dots,i_{n})\in\mathbb{N}^{n}$
+\begin_inset Formula $i\coloneqq (i_{1},\dots,i_{n})\in\mathbb{N}^{n}$
\end_inset
, llamamos a
@@ -5259,7 +5259,7 @@ homomorfismo de sustitución
\end_inset
viene dado por
-\begin_inset Formula $p(b_{1},\dots,b_{n}):=S(p):=\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$
+\begin_inset Formula $p(b_{1},\dots,b_{n})\coloneqq S(p)\coloneqq \sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$
\end_inset
.
@@ -5312,7 +5312,7 @@ Sean
\end_inset
con inversa
-\begin_inset Formula $\tau:=\sigma^{-1}$
+\begin_inset Formula $\tau\coloneqq \sigma^{-1}$
\end_inset
, tomando
@@ -5355,7 +5355,7 @@ Todo homomorfismo de anillos conmutativos
\end_inset
dado por
-\begin_inset Formula $\hat{f}(p):=\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\begin_inset Formula $\hat{f}(p)\coloneqq \sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
\end_inset
.