diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ga/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'ga/n3.lyx')
| -rw-r--r-- | ga/n3.lyx | 88 |
1 files changed, 44 insertions, 44 deletions
@@ -173,7 +173,7 @@ polinomios constantes \end_inset e -\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$ +\begin_inset Formula $I[X]\coloneqq \{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$ \end_inset son ideales de @@ -185,7 +185,7 @@ polinomios constantes \begin_layout Standard Dado -\begin_inset Formula $p:=\sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ +\begin_inset Formula $p\coloneqq \sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ \end_inset , llamamos @@ -197,7 +197,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ +\begin_inset Formula $\text{gr}(p)\coloneqq \max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ \end_inset , @@ -321,7 +321,7 @@ Sean \end_inset y -\begin_inset Formula $t:=\max\{m,n\}$ +\begin_inset Formula $t\coloneqq \max\{m,n\}$ \end_inset , entonces @@ -901,7 +901,7 @@ función polinómica \end_inset dada por -\begin_inset Formula $\hat{p}(b):=S_{b}(p)$ +\begin_inset Formula $\hat{p}(b)\coloneqq S_{b}(p)$ \end_inset . @@ -1210,7 +1210,7 @@ status open Demostración: \series default Para la existencia, basta ver que -\begin_inset Formula $d:=\mathtt{dividir}$ +\begin_inset Formula $d\coloneqq \mathtt{dividir}$ \end_inset termina y los valores @@ -1265,11 +1265,11 @@ Demostración: \end_inset , sea -\begin_inset Formula $p:=\frac{f_{n}}{g_{m}}X^{n-m}$ +\begin_inset Formula $p\coloneqq \frac{f_{n}}{g_{m}}X^{n-m}$ \end_inset , -\begin_inset Formula $(q,r):=d(f,acc)=d(f-pg,acc+p)$ +\begin_inset Formula $(q,r)\coloneqq d(f,acc)=d(f-pg,acc+p)$ \end_inset , pero como @@ -1570,7 +1570,7 @@ Para \end_inset , existe -\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ +\begin_inset Formula $m\coloneqq \max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ \end_inset @@ -1819,7 +1819,7 @@ status open Demostración: \series default Para -\begin_inset Formula $s:=\sum_{k=1}^{n}\alpha_{k}=1$ +\begin_inset Formula $s\coloneqq \sum_{k=1}^{n}\alpha_{k}=1$ \end_inset es evidente. @@ -2059,19 +2059,19 @@ Dado un anillo conmutativo derivada \series default de -\begin_inset Formula $P:=\sum_{k}a_{k}X^{k}\in A[X]$ +\begin_inset Formula $P\coloneqq \sum_{k}a_{k}X^{k}\in A[X]$ \end_inset como -\begin_inset Formula $P':=D(P):=\sum_{k\geq1}ka_{k}X^{k-1}$ +\begin_inset Formula $P'\coloneqq D(P)\coloneqq \sum_{k\geq1}ka_{k}X^{k-1}$ \end_inset , y escribimos -\begin_inset Formula $P^{(0)}:=P$ +\begin_inset Formula $P^{(0)}\coloneqq P$ \end_inset y -\begin_inset Formula $P^{(n+1)}:=P^{(n)\prime}$ +\begin_inset Formula $P^{(n+1)}\coloneqq P^{(n)\prime}$ \end_inset . @@ -2455,7 +2455,7 @@ status open . En efecto, sea -\begin_inset Formula $D:=A[X]$ +\begin_inset Formula $D\coloneqq A[X]$ \end_inset , es claro que @@ -2734,7 +2734,7 @@ Si \end_inset , sean -\begin_inset Formula $a:=a_{0}+\dots+a_{n}X^{n},b:=b_{0}+\dots+b_{m}X^{m}\in D[X]$ +\begin_inset Formula $a\coloneqq a_{0}+\dots+a_{n}X^{n},b\coloneqq b_{0}+\dots+b_{m}X^{m}\in D[X]$ \end_inset tales que @@ -2886,7 +2886,7 @@ Demostración: \end_inset múltiplo común de los denominadores en estos representantes, -\begin_inset Formula $g:=bG\in D[X]$ +\begin_inset Formula $g\coloneqq bG\in D[X]$ \end_inset , y si hacemos lo mismo con @@ -2898,7 +2898,7 @@ Demostración: \end_inset con -\begin_inset Formula $h:=cH\in D[X]$ +\begin_inset Formula $h\coloneqq cH\in D[X]$ \end_inset . @@ -2936,16 +2936,16 @@ Demostración: \end_inset , podemos tomar -\begin_inset Formula $g':=(bc)^{-1}g$ +\begin_inset Formula $g'\coloneqq (bc)^{-1}g$ \end_inset y -\begin_inset Formula $h':=h$ +\begin_inset Formula $h'\coloneqq h$ \end_inset . Si -\begin_inset Formula $n:=\varphi(bc)>0$ +\begin_inset Formula $n\coloneqq \varphi(bc)>0$ \end_inset , probado esto para @@ -3066,7 +3066,7 @@ status open \end_inset Primero vemos que todo -\begin_inset Formula $a:=a_{0}+\dots+a_{n}X^{n}\in D[X]$ +\begin_inset Formula $a\coloneqq a_{0}+\dots+a_{n}X^{n}\in D[X]$ \end_inset con @@ -3127,7 +3127,7 @@ Primero vemos que todo es obvio. De lo contrario existen -\begin_inset Formula $b:=b_{0}+\dots+b_{m}X^{m},c:=c_{0}+\dots+c_{k}X^{k}\in D[X]$ +\begin_inset Formula $b\coloneqq b_{0}+\dots+b_{m}X^{m},c\coloneqq c_{0}+\dots+c_{k}X^{k}\in D[X]$ \end_inset no invertibles ni unidades con @@ -3469,11 +3469,11 @@ Definimos \end_inset tal que, para -\begin_inset Formula $p:=\sum_{k\geq0}p_{k}X^{k}\in D[X]$ +\begin_inset Formula $p\coloneqq \sum_{k\geq0}p_{k}X^{k}\in D[X]$ \end_inset , -\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ +\begin_inset Formula $c(p)\coloneqq \{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ \end_inset , y para @@ -3489,7 +3489,7 @@ Definimos \end_inset , -\begin_inset Formula $c(p):=a^{-1}c(ap)$ +\begin_inset Formula $c(p)\coloneqq a^{-1}c(ap)$ \end_inset . @@ -3747,11 +3747,11 @@ Sea \end_inset , -\begin_inset Formula $n:=n_{i}:=\max_{k}n_{k}\geq1$ +\begin_inset Formula $n\coloneqq n_{i}\coloneqq \max_{k}n_{k}\geq1$ \end_inset , -\begin_inset Formula $m:=\text{mcm}_{k}s_{k}$ +\begin_inset Formula $m\coloneqq \text{mcm}_{k}s_{k}$ \end_inset y @@ -3874,7 +3874,7 @@ Lema de Gauss: Demostración: \series default -\begin_inset Formula $f':=f/c(f)$ +\begin_inset Formula $f'\coloneqq f/c(f)$ \end_inset es primitivo, pues @@ -3882,7 +3882,7 @@ Demostración: \end_inset , y análogamente -\begin_inset Formula $g':=g/c(g)$ +\begin_inset Formula $g'\coloneqq g/c(g)$ \end_inset es primitivo, luego @@ -4286,11 +4286,11 @@ Si \end_inset , -\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in D[X]$ \end_inset y -\begin_inset Formula $n:=\text{gr}(f)$ +\begin_inset Formula $n\coloneqq \text{gr}(f)$ \end_inset , todas las raíces de @@ -4519,11 +4519,11 @@ En particular, si \end_inset es primo, -\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ +\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ \end_inset es primitivo, -\begin_inset Formula $n:=\text{gr}(f)$ +\begin_inset Formula $n\coloneqq \text{gr}(f)$ \end_inset , @@ -4559,11 +4559,11 @@ Criterio de Eisenstein: \end_inset un DFU, -\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\begin_inset Formula $f\coloneqq \sum_{k}a_{k}X^{k}\in D[X]$ \end_inset primitivo y -\begin_inset Formula $n:=\text{gr}f$ +\begin_inset Formula $n\coloneqq \text{gr}f$ \end_inset , si existe un irreducible @@ -4596,7 +4596,7 @@ status open Demostración: \series default Sean -\begin_inset Formula $g:=b_{0}+\dots+b_{m}X^{m},h:=c_{0}+\dots+c_{k}X^{k}\in D[X]$ +\begin_inset Formula $g\coloneqq b_{0}+\dots+b_{m}X^{m},h\coloneqq c_{0}+\dots+c_{k}X^{k}\in D[X]$ \end_inset con @@ -4641,7 +4641,7 @@ Demostración: \end_inset , luego existe -\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$ +\begin_inset Formula $i\coloneqq \min\{j\mid p\nmid b_{j}\}$ \end_inset y entonces @@ -4761,7 +4761,7 @@ de 1 \end_inset , donde -\begin_inset Formula $\Phi_{n}(X):=X^{n-1}+X^{n-2}+\dots+X+1$ +\begin_inset Formula $\Phi_{n}(X)\coloneqq X^{n-1}+X^{n-2}+\dots+X+1$ \end_inset es el @@ -4876,7 +4876,7 @@ anillo de polinomios \end_inset como -\begin_inset Formula $A[X_{1},\dots,X_{n}]:=A[X_{1},\dots,X_{n-1}][X_{n}]$ +\begin_inset Formula $A[X_{1},\dots,X_{n}]\coloneqq A[X_{1},\dots,X_{n-1}][X_{n}]$ \end_inset . @@ -4984,7 +4984,7 @@ Dados \end_inset e -\begin_inset Formula $i:=(i_{1},\dots,i_{n})\in\mathbb{N}^{n}$ +\begin_inset Formula $i\coloneqq (i_{1},\dots,i_{n})\in\mathbb{N}^{n}$ \end_inset , llamamos a @@ -5259,7 +5259,7 @@ homomorfismo de sustitución \end_inset viene dado por -\begin_inset Formula $p(b_{1},\dots,b_{n}):=S(p):=\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ +\begin_inset Formula $p(b_{1},\dots,b_{n})\coloneqq S(p)\coloneqq \sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ \end_inset . @@ -5312,7 +5312,7 @@ Sean \end_inset con inversa -\begin_inset Formula $\tau:=\sigma^{-1}$ +\begin_inset Formula $\tau\coloneqq \sigma^{-1}$ \end_inset , tomando @@ -5355,7 +5355,7 @@ Todo homomorfismo de anillos conmutativos \end_inset dado por -\begin_inset Formula $\hat{f}(p):=\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\begin_inset Formula $\hat{f}(p)\coloneqq \sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ \end_inset . |
