diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-05-26 20:20:57 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-05-26 20:20:57 +0200 |
| commit | ff6ae60593aa56380a89dd74bbe8cfcc2da0c56a (patch) | |
| tree | 3b9d5cd4da6fafc07bd19d002d5f872fdd786dc8 /ga | |
| parent | f40f39b715dbf9ea40b64464944d6c4406473745 (diff) | |
Abelianos
Diffstat (limited to 'ga')
| -rw-r--r-- | ga/n.lyx | 14 | ||||
| -rw-r--r-- | ga/n5.lyx | 2012 |
2 files changed, 2026 insertions, 0 deletions
@@ -193,5 +193,19 @@ filename "n4.lyx" \end_layout +\begin_layout Chapter +Grupos abelianos finitos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ga/n5.lyx b/ga/n5.lyx new file mode 100644 index 0000000..7e21c49 --- /dev/null +++ b/ga/n5.lyx @@ -0,0 +1,2012 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Sumas directas +\end_layout + +\begin_layout Standard +Dada una familia +\begin_inset Formula $(B_{i})_{i\in I}$ +\end_inset + + de subgrupos de un grupo abeliano, llamamos +\series bold +suma +\series default + de +\begin_inset Formula $(B_{i})_{i\in I}$ +\end_inset + + a +\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}:b_{i}\in B_{i},\{i\in I:b_{i}\neq0\}\text{ finito}\}$ +\end_inset + +. + Si +\begin_inset Formula $I=\{1,\dots,n\}$ +\end_inset + +, llamamos +\begin_inset Formula $\sum_{i\in I}B_{i}=:B_{1}+\dots+B_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La familia +\begin_inset Formula $(B_{i})_{i\in I}$ +\end_inset + + es +\series bold +independiente +\series default + si el 0 se expresa de forma única como suma de elementos de los +\begin_inset Formula $B_{i}$ +\end_inset + + ( +\begin_inset Formula $\forall i,b_{i}\in B_{i}\land\sum_{i\in I}b_{i}=0\implies\forall i,b_{i}=0$ +\end_inset + +), si y sólo si cada elemento de +\begin_inset Formula $\sum_{i\in I}B_{i}$ +\end_inset + + se expresa de forma única como suma de elementos de los +\begin_inset Formula $B_{i}$ +\end_inset + +, si y sólo si para cada +\begin_inset Formula $j\in I$ +\end_inset + +, +\begin_inset Formula $B_{j}\cap(\sum_{i\in I\setminus\{j\}}B_{i})=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Si +\begin_inset Formula $\sum_{i\in I}b_{i}=\sum_{i\in I}c_{i}$ +\end_inset + +, entonces +\begin_inset Formula $\sum_{i\in I}(b_{i}-c_{i})=0$ +\end_inset + +, luego para cada +\begin_inset Formula $i$ +\end_inset + +, +\begin_inset Formula $b_{i}-c_{i}=0$ +\end_inset + + y +\begin_inset Formula $b_{i}=c_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Si +\begin_inset Formula $x\in B_{j}\cap(\sum_{i\in I\setminus\{j\}}B_{i})$ +\end_inset + +, podemos escribir +\begin_inset Formula $x=-b_{j}=\sum_{i\in I\setminus\{j\}}b_{i}$ +\end_inset + + con +\begin_inset Formula $b_{i}\in B_{i}$ +\end_inset + + para todo +\begin_inset Formula $i\in I$ +\end_inset + +, pero entonces +\begin_inset Formula $\sum_{i\in I}b_{i}=0$ +\end_inset + + y por tanto cada +\begin_inset Formula $b_{i}=0$ +\end_inset + + y +\begin_inset Formula $x=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Si +\begin_inset Formula $\sum_{i\in I}b_{i}=0$ +\end_inset + +, para cada +\begin_inset Formula $j$ +\end_inset + +, +\begin_inset Formula $b_{j}=\sum_{i\in I\setminus\{j\}}(-b_{i})\in B_{j}\cap(\sum_{i\in I\setminus\{j\}}B_{i})=0$ +\end_inset + +, luego +\begin_inset Formula $b_{j}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Cuando +\begin_inset Formula $(B_{i})_{i\in I}$ +\end_inset + + es independiente, su suma se llama +\series bold +suma directa +\series default +, +\begin_inset Formula $\bigoplus_{i\in I}B_{i}$ +\end_inset + +. + Si +\begin_inset Formula $I=\{1,\dots,n\}$ +\end_inset + +, llamamos +\begin_inset Formula $\bigoplus_{i\in I}B_{i}=:B_{1}\oplus\dots\oplus B_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +En +\begin_inset Formula $(\mathbb{R}^{*},\cdot)$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}^{*}=\langle-1\rangle\oplus\mathbb{R}^{+}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son grupos abelianos, +\begin_inset Formula $A\times B=(A\times0)\oplus(0\times B)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para cada +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}\times\mathbb{Z}=\langle(1,0)\rangle\oplus\langle(a,1)\rangle$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La intersección es nula y, dado +\begin_inset Formula $(x,y)\in\mathbb{Z}\times\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $(x,y)=y(a,1)+(x-ya)(1,0)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +En +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + no hay dos subgrupos no triviales independientes. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + subgrupos no triviales de +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, con lo que existen +\begin_inset Formula $\frac{a}{n}\in A\setminus0$ +\end_inset + + y +\begin_inset Formula $\frac{b}{m}\in B\setminus0$ +\end_inset + +. + Entonces +\begin_inset Formula $bn\frac{a}{n}-am\frac{b}{m}$ +\end_inset + + es una expresión no trivial de 0 como suma de elementos de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son subgrupos no triviales de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, también lo son de +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + y tampoco son independientes. +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $\hat{B}_{i}:=0\times\dots0\times B_{i}\times0\times\dots\times0\leq B_{1}\times\dots\times B_{n}$ +\end_inset + +, entonces +\begin_inset Formula $B_{1}\times\dots\times B_{n}=\tilde{B}_{1}\oplus\dots\oplus\tilde{B}_{n}$ +\end_inset + +, con +\begin_inset Formula $\hat{B}_{i}\cong B_{i}$ +\end_inset + +, y +\begin_inset Formula $f:B_{1}\times\dots\times B_{n}\to B_{1}\oplus\dots\oplus B_{n}$ +\end_inset + + dada por +\begin_inset Formula $f(b_{1},\dots,b_{n}):=b_{1}+\dots+b_{n}$ +\end_inset + + es un isomorfismo de grupos. + Por ello identificamos +\begin_inset Formula $B_{1}\oplus\dots\oplus B_{n}$ +\end_inset + + con +\begin_inset Formula $B_{1}\times\dots\times B_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $(B_{i})_{i\in I}$ +\end_inset + +, identificamos +\begin_inset Formula $\bigoplus_{i\in I}B_{i}$ +\end_inset + + con el subgrupo de +\begin_inset Formula $\prod_{i\in I}B_{i}$ +\end_inset + + de los +\begin_inset Formula $(b_{i})_{i\in I}$ +\end_inset + + con +\begin_inset Formula $\{i\in I:b_{i}\neq0\}$ +\end_inset + + finito. +\end_layout + +\begin_layout Section +Grupos indescomponibles y +\begin_inset Formula $p$ +\end_inset + +-grupos +\end_layout + +\begin_layout Standard +Un grupo abeliano no trivial es +\series bold +indescomponible +\series default + si no es suma directa de dos subgrupos propios. + Todo grupo abeliano finito no trivial es suma directa de grupos indescomponible +s. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + son indescomponibles. +\end_layout + +\begin_layout Enumerate +Un grupo cíclico +\begin_inset Formula $\langle a\rangle_{n}$ +\end_inset + + es indescomponible si y sólo si tiene orden potencia de primo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $n=p^{k}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo, los subgrupos de +\begin_inset Formula $\langle a\rangle$ +\end_inset + + forman una cadena +\begin_inset Formula $0<\langle p^{k-1}a\rangle<\dots<\langle p^{2}a\rangle<\langle pa\rangle<\langle a\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si el orden no es potencia de primo, existen +\begin_inset Formula $h,k>1$ +\end_inset + + coprimos con +\begin_inset Formula $n=hk$ +\end_inset + +, con lo que +\begin_inset Formula $\langle a\rangle$ +\end_inset + + tiene un subgrupo cíclico +\begin_inset Formula $\langle a^{k}\rangle$ +\end_inset + + de orden +\begin_inset Formula $h$ +\end_inset + + y otro +\begin_inset Formula $\langle a^{h}\rangle$ +\end_inset + + de orden +\begin_inset Formula $k$ +\end_inset + + y +\begin_inset Formula $\langle a\rangle=\langle a^{k}\rangle\oplus\langle a^{h}\rangle$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dado un grupo +\begin_inset Formula $G$ +\end_inset + +, llamamos +\series bold +exponente +\series default + o +\series bold +periodo +\series default + de +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $\text{Exp}(G)$ +\end_inset + +, al menor +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + tal que +\begin_inset Formula $\forall g\in G,g^{n}=1$ +\end_inset + +, o a +\begin_inset Formula $\infty$ +\end_inset + + si este no existe. + +\begin_inset Formula $G$ +\end_inset + + es +\series bold +periódico +\series default + o +\series bold +de torsión +\series default + si todo elemento de +\begin_inset Formula $G$ +\end_inset + + tiene orden finito. +\end_layout + +\begin_layout Standard +Si un grupo es finito tiene periodo finito, y si tiene periodo finito es + periódico. + Los recíprocos no se cumplen. + En efecto, +\begin_inset Formula $\prod_{n\in\mathbb{N}}\mathbb{Z}_{2}$ +\end_inset + + tiene periodo finito pero no es finito, y +\begin_inset Formula $\bigoplus_{n\geq1}\mathbb{Z}_{n}$ +\end_inset + + es periódico pero con periodo infinito. + Todo +\begin_inset Formula $p$ +\end_inset + +-grupo es periódico, pero no necesariamente finito, pues +\begin_inset Formula $\bigoplus_{n\in\mathbb{N}}\mathbb{Z}_{p^{n}}$ +\end_inset + + es un +\begin_inset Formula $p$ +\end_inset + +-grupo de orden infinito. +\end_layout + +\begin_layout Standard +Dados un grupo abeliano +\begin_inset Formula $A$ +\end_inset + + y un primo +\begin_inset Formula $p$ +\end_inset + +, el +\series bold +subgrupo de +\begin_inset Formula $p$ +\end_inset + +-torsión +\series default + de +\begin_inset Formula $A$ +\end_inset + + es +\begin_inset Formula +\[ +t_{p}(A):=\{a\in A:\exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A:|a|\text{ es potencia de }p\}. +\] + +\end_inset + +En efecto, si +\begin_inset Formula $p^{n}a=0$ +\end_inset + +, +\begin_inset Formula $|a|\mid p^{n}$ +\end_inset + + y por tanto es potencia de +\begin_inset Formula $p$ +\end_inset + +, y el recíproco es obvio. + Si +\begin_inset Formula $A$ +\end_inset + + es finito, +\begin_inset Formula $t_{p}(A)$ +\end_inset + + es el mayor +\begin_inset Formula $p$ +\end_inset + +-subgrupo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un grupo abeliano finito y +\begin_inset Formula $p_{1},\dots,p_{k}$ +\end_inset + + los divisores primos de +\begin_inset Formula $|A|$ +\end_inset + +, entonces +\begin_inset Formula +\[ +A=t_{p_{1}}(A)\oplus\dots\oplus t_{p_{k}}(A) +\] + +\end_inset + +con cada +\begin_inset Formula $t_{p_{i}}(A)\neq0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $|a|=:p_{1}^{\alpha_{1}}\cdots p_{k}^{\alpha_{k}}$ +\end_inset + + y, para +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +, +\begin_inset Formula $q_{i}:=\prod_{j\neq i}p_{j}^{\alpha_{j}}$ +\end_inset + +, es claro que ningún primo divide a todos los +\begin_inset Formula $q_{i}$ +\end_inset + +, luego +\begin_inset Formula $\text{mcd}\{q_{1},\dots,q_{k}\}=1$ +\end_inset + + y existen +\begin_inset Formula $m_{1},\dots,m_{k}\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $m_{1}q_{1}+\dots+m_{k}q_{k}=1$ +\end_inset + +. + Como +\begin_inset Formula $p_{i}^{\alpha_{i}}q_{i}a=0$ +\end_inset + +, +\begin_inset Formula $q_{i}a\in t_{p_{i}}(A)$ +\end_inset + +, luego +\begin_inset Formula $a=m_{1}q_{1}a+\dots+m_{k}q_{k}a\in t_{p_{1}}(A)+\dots+t_{p_{k}}(A)$ +\end_inset + +. + Por tanto +\begin_inset Formula $A=t_{p_{1}}(A)+\dots+t_{p_{k}}(A)$ +\end_inset + +. + Veamos que la suma es directa. + Sean +\begin_inset Formula $a_{1}+\dots+a_{k}=0$ +\end_inset + + con cada +\begin_inset Formula $a_{i}\in t_{p_{i}}(A)$ +\end_inset + +, para +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + + existe +\begin_inset Formula $\beta_{i}$ +\end_inset + + con +\begin_inset Formula $p_{i}^{\beta_{i}}a_{i}=0$ +\end_inset + +. + Sea entonces +\begin_inset Formula $t_{i}:=\prod_{j\neq i}p_{j}^{\beta_{j}}$ +\end_inset + + para cada +\begin_inset Formula $i$ +\end_inset + +, para +\begin_inset Formula $i\neq j$ +\end_inset + +, +\begin_inset Formula $t_{i}a_{j}=0$ +\end_inset + +, luego +\begin_inset Formula $t_{i}a_{i}=t_{i}\sum_{j\neq i}-a_{j}=0$ +\end_inset + +. + Entonces +\begin_inset Formula $|a_{i}|\mid t_{i},p_{i}^{\beta_{i}}$ +\end_inset + +, y como +\begin_inset Formula $t_{i}$ +\end_inset + + y +\begin_inset Formula $p_{i}^{\beta_{i}}$ +\end_inset + + son coprimos, +\begin_inset Formula $|a_{i}|=1$ +\end_inset + + y +\begin_inset Formula $a_{i}=0$ +\end_inset + +. + Por último, tenemos +\begin_inset Formula $|A|=|t_{p_{1}}(A)|\cdots|t_{p_{k}}(A)|$ +\end_inset + +, y como el orden de cada +\begin_inset Formula $t_{p_{i}}(A)$ +\end_inset + + es una potencia de +\begin_inset Formula $p_{i}$ +\end_inset + + y cada +\begin_inset Formula $p_{i}\mid|A|$ +\end_inset + +, debe ser +\begin_inset Formula $t_{p_{i}}(A)\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $n:=p_{1}^{\alpha_{1}}\cdots p_{k}^{\alpha_{k}}$ +\end_inset + + es una factorización prima, por el teorema chino de los restos, +\begin_inset Formula $\mathbb{Z}_{n}\cong\mathbb{Z}_{p_{1}^{\alpha_{1}}}\times\dots\times\mathbb{Z}_{p_{k}^{\alpha_{k}}}$ +\end_inset + +, y cada factor cumple +\begin_inset Formula $\mathbb{Z}_{p_{i}^{\alpha_{i}}}\cong t_{p}(\mathbb{Z}_{n})$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + es un grupo abeliano, +\begin_inset Formula $B\leq A$ +\end_inset + +, +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $na=0$ +\end_inset + +, en +\begin_inset Formula $A/B$ +\end_inset + + es +\begin_inset Formula $n(a+B)=0$ +\end_inset + +, luego +\begin_inset Formula $|a+B|\mid|a|$ +\end_inset + +. + En general estos órdenes no coinciden. +\end_layout + +\begin_layout Standard +Un grupo abeliano finito es indescomponible si y solo si es un +\begin_inset Formula $p$ +\end_inset + +-grupo cíclico. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A$ +\end_inset + + es un grupo abeliano finito indescomponible, que podemos suponer no trivial + al ser el grupo trivial cíclico. + Por la descomposición por grupos de torsión, debe ser +\begin_inset Formula $|A|=p^{n}$ +\end_inset + + para ciertos +\begin_inset Formula $p,n\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo y por tanto +\begin_inset Formula $A$ +\end_inset + + es +\begin_inset Formula $p$ +\end_inset + +-grupo. +\end_layout + +\begin_deeper +\begin_layout Standard +Queda ver que +\begin_inset Formula $A$ +\end_inset + + es cíclico. + Para +\begin_inset Formula $n=1$ +\end_inset + + ya lo sabemos. + Sea entonces +\begin_inset Formula $n>1$ +\end_inset + + y supongamos esto probado para +\begin_inset Formula $1,\dots,n-1$ +\end_inset + +. + Existe +\begin_inset Formula $a\in A$ +\end_inset + + tal que +\begin_inset Formula $|a|=\text{Exp}(A)$ +\end_inset + +, pues si +\begin_inset Formula $\max_{b\in A}|b|=p^{k}$ +\end_inset + +, como para todo +\begin_inset Formula $b\in A$ +\end_inset + +, +\begin_inset Formula $|b|$ +\end_inset + + es de la forma +\begin_inset Formula $p^{j}$ +\end_inset + + con +\begin_inset Formula $j\leq k$ +\end_inset + +, se tiene +\begin_inset Formula $p^{k}b=0$ +\end_inset + +, luego +\begin_inset Formula $\text{Exp}(A)=p^{k}=\max_{b\in A}|b|$ +\end_inset + +. + Sean +\begin_inset Formula $B:=\langle a\rangle$ +\end_inset + + y +\begin_inset Formula $C:=A/B$ +\end_inset + +, si +\begin_inset Formula $C=:C_{1}\oplus\dots\oplus C_{k}$ +\end_inset + + es la descomposición de +\begin_inset Formula $C$ +\end_inset + + por indescomponibles, por hipótesis de inducción, cada +\begin_inset Formula $C_{i}$ +\end_inset + + es cíclico. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $x$ +\end_inset + +, veamos que +\begin_inset Formula $x+B$ +\end_inset + + contiene un representante +\begin_inset Formula $y$ +\end_inset + + con +\begin_inset Formula $|y|=|x+B|$ +\end_inset + +. + Sean +\begin_inset Formula $|a|=\text{Exp}(A)=:p^{m}$ +\end_inset + +. + +\begin_inset Formula $|x|=p^{s}$ +\end_inset + + y +\begin_inset Formula $|x+B|=p^{t}$ +\end_inset + +, y se tiene +\begin_inset Formula $t\leq s\leq m$ +\end_inset + +. + Si +\begin_inset Formula $t=s$ +\end_inset + +, tomamos +\begin_inset Formula $y:=x$ +\end_inset + +. + De lo contrario, como +\begin_inset Formula $p^{t}(x+B)=0$ +\end_inset + +, +\begin_inset Formula $p^{t}x\in B=\langle a\rangle$ +\end_inset + +, es decir, +\begin_inset Formula $p^{t}x=qa$ +\end_inset + + para algún +\begin_inset Formula $q\in\mathbb{Z}$ +\end_inset + +. + Sean +\begin_inset Formula $r,u\in\mathbb{Z}$ +\end_inset + + tales que +\begin_inset Formula $q=rp^{u}$ +\end_inset + + y +\begin_inset Formula $\text{mcd}\{p,r\}=1$ +\end_inset + +, +\begin_inset Formula $p^{m+t-u}x=p^{m-u}p^{t}x=p^{m-u}qa=rp^{m}a=0$ +\end_inset + +, luego +\begin_inset Formula $s\leq m+t-u$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $p^{m+t-u-1}x=p^{m-u-1}qa=rp^{m-1}a\neq0$ +\end_inset + +, de donde +\begin_inset Formula $s=m+t-u$ +\end_inset + +. + Sea ahora +\begin_inset Formula $y:=x-rp^{m+t-s}a$ +\end_inset + +, entonces +\begin_inset Formula $y+B=x+B$ +\end_inset + +, luego +\begin_inset Formula $p^{t}=|x+B|=|y+B|\mid|y|$ +\end_inset + +, y como además +\begin_inset Formula $p^{t}y=p^{t}x-rp^{m+t-s}a=p^{t}x-rp^{u}a=p^{t}x-qa=0$ +\end_inset + +, se tiene +\begin_inset Formula $|y|=p^{t}=|x+B|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Con esto, para cada +\begin_inset Formula $i$ +\end_inset + + podemos tomar un +\begin_inset Formula $x_{i}\in A$ +\end_inset + + tal que +\begin_inset Formula $C_{i}=\langle x_{i}+B\rangle$ +\end_inset + + y +\begin_inset Formula $|x_{i}|=|x_{i}+B|$ +\end_inset + +. + Dado +\begin_inset Formula $p\in A$ +\end_inset + +, podemos escribir +\begin_inset Formula $p+B$ +\end_inset + + como +\begin_inset Formula $m_{1}x_{1}+\dots+m_{k}x_{k}+B$ +\end_inset + + y por tanto +\begin_inset Formula $p$ +\end_inset + + como +\begin_inset Formula $m_{!}x_{1}+\dots+m_{k}x_{k}+B$ +\end_inset + +. + Por tanto +\begin_inset Formula $A=B+\langle x_{1}\rangle+\dots+\langle x_{k}\rangle$ +\end_inset + +, y queremos ver que la suma es directa. + Dados +\begin_inset Formula $b\in B$ +\end_inset + + y +\begin_inset Formula $m_{1},\dots,m_{k}\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $b+m_{1}x_{1}+\dots+m_{k}x_{k}=0$ +\end_inset + +, +\begin_inset Formula $0=m_{1}(x_{1}+B)+\dots+m_{k}(x_{k}+B)$ +\end_inset + + y por tanto para cada +\begin_inset Formula $i$ +\end_inset + +, +\begin_inset Formula $m_{i}(x_{i}+B)=0$ +\end_inset + +, +\begin_inset Formula $|x_{i}+B|=|x_{i}|\mid|m_{i}|$ +\end_inset + + y +\begin_inset Formula $m_{i}x_{i}=0$ +\end_inset + +, con lo que también +\begin_inset Formula $b=0$ +\end_inset + +. + Finalmente, como +\begin_inset Formula $A$ +\end_inset + + es indescomponible y +\begin_inset Formula $B\neq0$ +\end_inset + +, deducimos que +\begin_inset Formula $A=B=\langle a\rangle$ +\end_inset + +, y +\begin_inset Formula $A$ +\end_inset + + es cíclico. +\end_layout + +\end_deeper +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Ya hemos visto que todo grupo cíclico de orden +\begin_inset Formula $p^{n}$ +\end_inset + + es indescomponible. +\end_layout + +\begin_layout Standard +Esto significa que todo grupo abeliano finito es suma directa de subgrupos + cíclicos, cada uno con orden potencia de primo. +\end_layout + +\begin_layout Section +Descomposiciones primarias e invariantes +\end_layout + +\begin_layout Standard +Una +\series bold +descomposición primaria +\series default + o +\series bold +indescomponible +\series default + de un grupo abeliano finito +\begin_inset Formula $A$ +\end_inset + + es una expresión de la forma +\begin_inset Formula +\begin{align*} +A= & \langle a_{11}\rangle_{p_{1}^{\alpha_{11}}}\oplus\dots\oplus\langle a_{1m_{1}}\rangle_{p_{1}^{\alpha_{1m_{1}}}}\oplus\\ + & \dots\oplus\\ + & \langle a_{k1}\rangle_{p_{k}^{\alpha_{k1}}}\oplus\dots\oplus\langle a_{km_{k}}\rangle_{p_{k}^{\alpha_{km_{k}}}}, +\end{align*} + +\end_inset + +donde +\begin_inset Formula $p_{1}<\dots<p_{k}$ +\end_inset + + son los primos que dividen a +\begin_inset Formula $|A|$ +\end_inset + + y +\begin_inset Formula $\alpha_{i1}\geq\dots\geq\alpha_{im_{i}}\geq1$ +\end_inset + + para cada +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, todo grupo abeliano tiene una descomposición primaria, que podemos obtener + con el algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:primary-decomp" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +SetKwProg{Fn}{función}{}{fin} +\end_layout + +\begin_layout Plain Layout + + +\backslash +SetKwFunction{descomponer}{descomponer} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Fn{ +\backslash +descomponer{$A$}}{ +\end_layout + +\begin_layout Plain Layout + + $F +\backslash +gets +\backslash +{ +\backslash +}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$p$ divisor primo de $|A|$}{ +\end_layout + +\begin_layout Plain Layout + + $T +\backslash +gets t_p(A)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Encontrar $a +\backslash +in A$ con $|a|= +\backslash +text{Exp}(T)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Añadir $ +\backslash +langle a +\backslash +rangle$ a $F$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$C$ en +\backslash +descomponer{$T/ +\backslash +langle a +\backslash +rangle$}}{ +\end_layout + +\begin_layout Plain Layout + + Dado un $ +\backslash +gamma +\backslash +in C$, +\end_layout + +\begin_layout Plain Layout + + obtener $x +\backslash +in +\backslash +gamma=x+ +\backslash +langle a +\backslash +rangle$ +\end_layout + +\begin_layout Plain Layout + + tal que $|x|=| +\backslash +gamma|$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Añadir $ +\backslash +langle x +\backslash +rangle$ a $F$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + } +\end_layout + +\begin_layout Plain Layout + + } +\end_layout + +\begin_layout Plain Layout + + +\backslash +Devolver $F$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:primary-decomp" + +\end_inset + +Método general para obtener descomposiciones primarias. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +descomposición invariante +\series default + de un grupo abeliano finito +\begin_inset Formula $A$ +\end_inset + + es una expresión +\begin_inset Formula $A=\langle a_{1}\rangle\oplus\dots\oplus\langle a_{n}\rangle$ +\end_inset + + tal que para +\begin_inset Formula $i\in\{2,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $|a_{i}|\mid|a_{i-1}|$ +\end_inset + +, y los +\begin_inset Formula $\langle a_{i}\rangle$ +\end_inset + + son no triviales. + Entonces, el periodo de +\begin_inset Formula $A$ +\end_inset + + es el orden de +\begin_inset Formula $\langle a_{1}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Todo grupo abeliano finito tiene una descomposición invariante. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A$ +\end_inset + + este grupo, si +\begin_inset Formula $m$ +\end_inset + + es el máximo de sumandos en una fila de la descomposición primaria de +\begin_inset Formula $A$ +\end_inset + +, añadiendo sumandos triviales al final de cada fila con menos de +\begin_inset Formula $m$ +\end_inset + + sumandos hasta llegar a +\begin_inset Formula $m$ +\end_inset + +, tenemos una expresión +\begin_inset Formula +\[ +A=\langle a_{11}\rangle_{p_{1}^{\alpha_{1}}}\oplus\dots\oplus\langle a_{1m_{1}}\rangle_{p_{1}^{\alpha_{1m}}}\oplus\dots\oplus\langle a_{k1}\rangle_{p_{k}^{\alpha_{k1}}}\oplus\dots\oplus\langle a_{km_{k}}\rangle_{p_{k}^{\alpha_{km}}} +\] + +\end_inset + + con +\begin_inset Formula $p_{1}<\dots<p_{k}$ +\end_inset + + primos y, para +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +, +\begin_inset Formula $\alpha_{i1}\geq\dots\geq\alpha_{im}\geq0$ +\end_inset + +. + Entonces, para +\begin_inset Formula $j\in\{1,\dots,m\}$ +\end_inset + +, sean +\begin_inset Formula $b_{j}:=a_{1j}+\dots+a_{kj}$ +\end_inset + + y +\begin_inset Formula $d_{j}:=p_{1}^{\alpha_{1j}}\cdots p_{k}^{\alpha_{kj}}$ +\end_inset + +, por el teorema chino de los restos, +\begin_inset Formula $\langle b_{j}\rangle_{d_{j}}=\langle a_{1j}\rangle_{p_{1}^{\alpha_{1j}}}\oplus\dots\oplus\langle a_{kj}\rangle_{p_{k}^{\alpha_{kj}}}$ +\end_inset + +, con lo que +\begin_inset Formula $A=\langle b_{1}\rangle_{d_{1}}\oplus\dots\oplus\langle b_{m}\rangle_{d_{m}}$ +\end_inset + +, y esta es una descomposición invariante. +\end_layout + +\begin_layout Standard +Dados dos grupos abelianos finitos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +, una descomposición por suma directa de +\begin_inset Formula $A$ +\end_inset + + y una de +\begin_inset Formula $B$ +\end_inset + + son +\series bold +semejantes +\series default + si existe una biyección entre los subgrupos en la descomposición de +\begin_inset Formula $A$ +\end_inset + + y la de +\begin_inset Formula $B$ +\end_inset + + que a cada subgrupo de +\begin_inset Formula $A$ +\end_inset + + le asocia uno de +\begin_inset Formula $B$ +\end_inset + + isomorfo. + En particular, dos descomposiciones primarias son semejantes si y sólo + si tienen el mismo número de filas, cada fila tiene el mismo número de + sumandos y sumandos correspondientes tienen el mismo orden, y dos descomposicio +nes invariantes son semejantes si tienen el mismo número de sumandos y las + mismas listas de órdenes. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $A$ +\end_inset + + es un grupo abeliano finito: +\end_layout + +\begin_layout Enumerate +Todas las descomposiciones primarias de +\begin_inset Formula $A$ +\end_inset + + son semejantes. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $A:=A_{11}\oplus\dots\oplus A_{1m_{1}}\oplus\dots\oplus A_{k1}\oplus\dots\oplus A_{kj}$ +\end_inset + + con +\begin_inset Formula $|A_{ij}|=p_{i}^{\alpha_{ij}}$ +\end_inset + + para ciertos +\begin_inset Formula $p_{1}<\dots<p_{k}$ +\end_inset + + y +\begin_inset Formula $\alpha_{ij}$ +\end_inset + + con +\begin_inset Formula $\alpha_{i1}\geq\dots\alpha_{im_{i}}\geq1$ +\end_inset + + para cada +\begin_inset Formula $i$ +\end_inset + +. + Para cada +\begin_inset Formula $i$ +\end_inset + +, +\begin_inset Formula $A_{i1}\oplus\dots\oplus A_{im_{i}}=t_{p_{i}}(A)$ +\end_inset + +, luego estos subgrupos están determinados por +\begin_inset Formula $A$ +\end_inset + + y basta probar la afirmación cuando +\begin_inset Formula $A$ +\end_inset + + es un +\begin_inset Formula $p$ +\end_inset + +-grupo finito. + En este caso, sean +\begin_inset Formula $A=A_{1}\oplus\dots\oplus A_{n}=B_{1}\oplus\dots\oplus B_{m}$ +\end_inset + + dos descomposiciones primarias de +\begin_inset Formula $A$ +\end_inset + + con +\begin_inset Formula $|A_{i}|=p^{\alpha_{i}}$ +\end_inset + + y +\begin_inset Formula $|B_{i}|=p^{\beta_{i}}$ +\end_inset + + donde +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\alpha_{1}\geq\dots\geq\alpha_{n}\geq1$ +\end_inset + + y +\begin_inset Formula $\beta_{1}\geq\dots\geq\beta_{m}\geq1$ +\end_inset + +. + Como +\begin_inset Formula $p^{\alpha_{1}}=\text{Exp}(A)=p^{\beta_{1}}$ +\end_inset + +, +\begin_inset Formula $\alpha_{1}=\beta_{1}$ +\end_inset + +. + Dado un cierto +\begin_inset Formula $i$ +\end_inset + +, supongamos que +\begin_inset Formula $\alpha_{j}=\beta_{j}$ +\end_inset + + para +\begin_inset Formula $j\in\{1,\dots,i-1\}$ +\end_inset + +, y podemos suponer +\begin_inset Formula $\alpha_{i}\leq\beta_{i}$ +\end_inset + +. + Si +\begin_inset Formula $C$ +\end_inset + + es un grupo cíclico de orden +\begin_inset Formula $p^{r}$ +\end_inset + + y +\begin_inset Formula $s\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $p^{s}C=0$ +\end_inset + + si y sólo si +\begin_inset Formula $s\geq r$ +\end_inset + +, mientras que si +\begin_inset Formula $s\leq r$ +\end_inset + +, +\begin_inset Formula $p^{s}C$ +\end_inset + + es cíclico de orden +\begin_inset Formula $p^{r-s}$ +\end_inset + +. + Entonces, si +\begin_inset Formula $q:=p^{\alpha_{i}}$ +\end_inset + +, +\begin_inset Formula $qA_{i},\dots,qA_{n}=0$ +\end_inset + +, luego +\begin_inset Formula $qA\cong qA_{1}\oplus\dots\oplus qA_{i-1}\cong(qB_{1}\oplus\dots\oplus qB_{i-1})\oplus(qB_{i}\oplus qB_{m})$ +\end_inset + +, y como +\begin_inset Formula $|qA_{1}\oplus\dots\oplus qA_{i-1}|=|qB_{1}\oplus\dots\oplus qB_{i-1}|$ +\end_inset + +, +\begin_inset Formula $|qB_{i}\oplus\dots\oplus qB_{m}|=0$ +\end_inset + +, con lo que +\begin_inset Formula $qB_{i}=p^{\alpha_{i}}B_{i}=0$ +\end_inset + + y +\begin_inset Formula $\alpha_{i}\geq\beta_{i}$ +\end_inset + +, luego +\begin_inset Formula $\alpha_{i}=\beta_{i}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todas las descomposiciones invariantes de +\begin_inset Formula $A$ +\end_inset + + son semejantes. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta usar la correspondencia entre descomposiciones primarias e invariantes + de la demostración de existencia de descomposiciones invariantes. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un grupo abeliano finito con descomposición primaria +\begin_inset Formula $A=\bigoplus_{i=1}^{n}\langle a_{i}\rangle_{k_{i}}$ +\end_inset + + y descomposición invariante +\begin_inset Formula $A=\bigoplus_{i=1}^{m}\langle a_{i}\rangle_{t_{i}}$ +\end_inset + +, llamamos +\series bold +lista de los divisores elementales +\series default + de +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $(k_{1},\dots,k_{n})$ +\end_inset + +, y +\series bold +lista de los factores invariantes +\series default + de +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $(t_{1},\dots,t_{m})$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de estructura de grupos abelianos finitos: +\end_layout + +\begin_layout Enumerate +Todo grupo abeliano finito tiene una descomposición primaria y una invariante. +\end_layout + +\begin_layout Enumerate +Dos grupos abelianos finitos son isomorfos si y sólo si tienen descomposiciones + primarias semejantes, si y sólo si tienen descomposiciones invariantes + semejantes, si y sólo si tienen la misma lista de divisores elementales, + si y sólo si tienen la misma lista de factores invariantes. +\end_layout + +\begin_layout Standard +Un grupo abeliano es +\series bold +finitamente generado +\series default + si es suma directa de una cantidad finita de grupos cíclicos, de orden + finito o infinito. + +\series bold +Teorema de estructura de grupos abelianos finitamente generados: +\end_layout + +\begin_layout Enumerate +Todo grupo abeliano finitamente generado tiene una descomposición primaria + y una invariante. +\end_layout + +\begin_layout Enumerate +Dos grupos finitamente generados son isomorfos si y sólo si tienen descomposicio +nes primarias semejantes, si y sólo si tienen descomposiciones invariantes + semejantes. +\end_layout + +\begin_layout Standard +Así, a cada grupo abeliano finitamente generado le asociamos una lista de + divisores elementales +\begin_inset Formula $(q;p_{1}^{\alpha_{11}},\dots,p_{1}^{\alpha_{1m_{1}}},\dots,p_{k}^{\alpha_{k1}},\dots,p_{k}^{\alpha_{km_{k}}})$ +\end_inset + + y una de factores invariantes +\begin_inset Formula $(q;d_{1},\dots,d_{n})$ +\end_inset + +, donde +\begin_inset Formula $q$ +\end_inset + + es el número de sumandos cíclicos infinitos. +\end_layout + +\end_body +\end_document |
