diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /gae/n1.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'gae/n1.lyx')
| -rw-r--r-- | gae/n1.lyx | 1753 |
1 files changed, 1753 insertions, 0 deletions
diff --git a/gae/n1.lyx b/gae/n1.lyx new file mode 100644 index 0000000..acdf0f9 --- /dev/null +++ b/gae/n1.lyx @@ -0,0 +1,1753 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Espacios afines +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1b.lyx" + +\end_inset + + +\end_layout + +\begin_layout Section +Variedades afines +\end_layout + +\begin_layout Standard +Un subconjunto +\begin_inset Formula ${\cal L}\subseteq{\cal E}$ +\end_inset + + es una +\series bold +variedad (lineal) afín +\series default + si +\begin_inset Formula $\exists P\in{\cal E},W\subseteq V:{\cal L}=P+W:=\{P+\vec{w}\}_{\vec{w}\in W}$ +\end_inset + +. + Se dice que +\begin_inset Formula ${\cal L}$ +\end_inset + + +\series bold +pasa por +\series default + el punto +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $W$ +\end_inset + + es la +\series bold +dirección +\series default + de +\begin_inset Formula ${\cal L}$ +\end_inset + + ( +\begin_inset Formula $\text{dir}({\cal L})=W$ +\end_inset + +), y se define la dimensión de +\begin_inset Formula ${\cal L}$ +\end_inset + + como +\begin_inset Formula +\[ +\dim({\cal L}):=\text{dim}(\text{dir}({\cal L}))=\dim_{K}(W) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Una variedad de dimensión 1 es una +\series bold +recta (afín) +\series default +, determinada por cualquier +\begin_inset Formula $P\in{\cal L}$ +\end_inset + + y vector +\begin_inset Formula $\vec{v}\in\text{dir}({\cal L})$ +\end_inset + + no nulo, llamado +\series bold +vector director +\series default + de la recta. + Una variedad de dimensión 2 es un +\series bold +plano afín +\series default +, y una de dimensión +\begin_inset Formula $n-1$ +\end_inset + + (con +\begin_inset Formula $n=\dim({\cal E})$ +\end_inset + +) es un +\series bold +hiperplano afín +\series default +. + Así, para todo +\begin_inset Formula $P\in{\cal E}$ +\end_inset + +, se tiene que +\begin_inset Formula $P+V={\cal E}$ +\end_inset + +. + Propiedades: Sean +\begin_inset Formula ${\cal L}=P+W$ +\end_inset + + y +\begin_inset Formula ${\cal L}'=P'+W'$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $Q\in{\cal L}\iff\overrightarrow{PQ}\in W$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $Q\in{\cal L}\implies\exists\vec{w}\in W:Q=P+\vec{w}\implies\overrightarrow{PQ}=\vec{w}\in W$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\overrightarrow{PQ}\in W\implies Q=P+\overrightarrow{PQ}\in P+W={\cal L}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $W=\{\overrightarrow{PR}\}_{R\in{\cal L}}=\{\overrightarrow{QR}\}_{Q,R\in{\cal L}}$ +\end_inset + + ( +\begin_inset Formula $W$ +\end_inset + + está unívocamente determinado por +\begin_inset Formula ${\cal L}$ +\end_inset + +). +\begin_inset Newline newline +\end_inset + +Vemos que +\begin_inset Formula $W\subseteq\{\overrightarrow{PR}\}_{R\in{\cal L}}\subseteq\{\overrightarrow{QR}\}_{Q,R\in{\cal L}}\subseteq W$ +\end_inset + +. + Primero, si +\begin_inset Formula $\vec{w}\in W$ +\end_inset + +, podemos definir +\begin_inset Formula $R:=P+\vec{w}\in{\cal L}$ +\end_inset + + y entonces +\begin_inset Formula $\vec{w}=\overrightarrow{PR}\in\{\overrightarrow{PR}\}_{R\in{\cal L}}$ +\end_inset + +. + El segundo contenido es evidente, y para el tercero, dados +\begin_inset Formula $Q,R\in{\cal L}$ +\end_inset + +, entonces +\begin_inset Formula $\overrightarrow{PQ},\overrightarrow{PR}\in W$ +\end_inset + +, por lo que +\begin_inset Formula $\overrightarrow{QR}=\overrightarrow{PR}-\overrightarrow{PQ}\in W$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P'\in{\cal L}\implies{\cal L}=P'+W$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula ${\cal L}'=P'+W$ +\end_inset + +, como +\begin_inset Formula $P'\in{\cal L}$ +\end_inset + +, +\begin_inset Formula $\overrightarrow{PP'}\in W$ +\end_inset + +, y así, +\begin_inset Formula +\[ +Q\in{\cal L}'\iff\overrightarrow{P'Q}\in W\iff\overrightarrow{PQ}=\overrightarrow{PP'}+\overrightarrow{P'Q}\in W\iff Q\in{\cal L} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $({\cal L},W,\varphi|_{{\cal L}\times W})$ +\end_inset + + es un espacio afín. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $Q\in{\cal L}$ +\end_inset + + y +\begin_inset Formula $\vec{w}\in W$ +\end_inset + +, entonces +\begin_inset Formula $Q+\vec{w}\in Q+W={\cal L}$ +\end_inset + +. + Las propiedades +\begin_inset Formula $(P+\vec{v})+\vec{w}=P+(\vec{v}+\vec{w})$ +\end_inset + + y +\begin_inset Formula $P+\overrightarrow{0}=P$ +\end_inset + + se cumplen trivialmente, y si +\begin_inset Formula $R,Q\in{\cal L}$ +\end_inset + + entonces +\begin_inset Formula $\overrightarrow{RQ}\in W$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\subseteq{\cal L}'\iff W\subseteq W'\land\overrightarrow{PP'}\in W'\iff W\subseteq W'\land P\in{\cal L}'$ +\end_inset + +; +\begin_inset Formula ${\cal L}={\cal L}'\iff W=W'\land\overrightarrow{PP'}\in W$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Basta ver la primera serie de equivalencias. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[1\implies2]$ +\end_inset + + +\begin_inset Formula ${\cal L}\subseteq{\cal L}'\implies P\in{\cal L}'\implies\overrightarrow{PP'}\in W'$ +\end_inset + +. + Además, +\begin_inset Formula $W=\{\overrightarrow{QR}\}_{Q,R\in{\cal L}}\subseteq\{\overrightarrow{QR}\}_{Q,R\in{\cal L}'}=W'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[2\implies3]$ +\end_inset + + +\begin_inset Formula $\overrightarrow{PP'}\in W'\implies\overrightarrow{P'P}\in W'\implies P\in{\cal L}'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[3\implies1]$ +\end_inset + + +\begin_inset Formula $W\subseteq W'\land P\in{\cal L}'\implies{\cal L}=P+W\subseteq P+W'={\cal L}'$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +Paralelismo, intersección y cruce de variedades +\end_layout + +\begin_layout Standard +Dos variedades +\begin_inset Formula ${\cal L}$ +\end_inset + + y +\begin_inset Formula ${\cal L}'$ +\end_inset + + son +\series bold +paralelas +\series default + ( +\begin_inset Formula ${\cal L}\parallel{\cal L}'$ +\end_inset + +) si tienen la misma dirección. + Si solo se tiene que +\begin_inset Formula $\text{dir}({\cal L})\subseteq\text{dir}({\cal L}')$ +\end_inset + +, se dice que +\begin_inset Formula ${\cal L}$ +\end_inset + + es +\series bold +débilmente paralela +\series default + a +\begin_inset Formula ${\cal L}'$ +\end_inset + + ( +\begin_inset Formula ${\cal L}\ll{\cal L}'$ +\end_inset + +). + Cuando no hay ambigüedad, a veces se omite el +\begin_inset Quotes cld +\end_inset + +débilmente +\begin_inset Quotes crd +\end_inset + +. + Se trata de una relación reflexiva y transitiva en la que +\begin_inset Formula ${\cal L}\ll{\cal L}'\land{\cal L}'\ll{\cal L}\implies{\cal L}\parallel{\cal L}'$ +\end_inset + +, pero no es antisimétrica. +\end_layout + +\begin_layout Standard +El +\series bold +postulado de las paralelas de Euclides +\series default + afirma que por un punto exterior a una recta pasa una y sólo una paralela + a esta. + Esto se puede generalizar a que, dados +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + y una variedad afín +\begin_inset Formula ${\cal L}$ +\end_inset + +, existe una única variedad +\begin_inset Formula ${\cal L}'$ +\end_inset + + que pasa por +\begin_inset Formula $P$ +\end_inset + + y es paralela a +\begin_inset Formula ${\cal L}$ +\end_inset + +, y esta es +\begin_inset Formula ${\cal L}'=P+\text{dir}({\cal L})$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\ll{\cal L}'\implies{\cal L}\subseteq{\cal L}'\lor{\cal L}\cap{\cal L}'=\emptyset$ +\end_inset + +. +\begin_inset Formula +\[ +W\subseteq W'\land\exists Q\in{\cal L}\cap{\cal L}'\implies{\cal L}=Q+W\subseteq Q+W'={\cal L}' +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\parallel{\cal L}'\implies{\cal L}={\cal L}'\lor{\cal L}\cap{\cal L}'=\emptyset$ +\end_inset + +. +\begin_inset Formula +\[ +W=W'\land\exists Q\in{\cal L}\cap{\cal L}'\implies{\cal L}=Q+W=Q+W'={\cal L}' +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\ll{\cal L}'\iff\exists{\cal S}:{\cal L}\parallel{\cal S}\subseteq{\cal L}'\iff\exists{\cal S}':{\cal L}\subseteq{\cal S}'\parallel{\cal L}'$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[1\implies2,3]$ +\end_inset + + +\begin_inset Formula $W\subseteq W'\implies{\cal L}=P+W\parallel P'+W\subseteq P'+W'={\cal L}'\land{\cal L}=P+W\subseteq P+W'\parallel P'+W'={\cal L}'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[2\implies1]$ +\end_inset + + +\begin_inset Formula ${\cal L}\parallel{\cal S}\subseteq{\cal L}'\implies\text{dir}({\cal L})=\text{dir}({\cal S})\subseteq\text{dir}({\cal L}')\implies{\cal L}\ll{\cal L}'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[3\implies1]$ +\end_inset + + +\begin_inset Formula ${\cal L}\subseteq{\cal S}'\parallel{\cal L}\implies\text{dir}({\cal L})\subseteq\text{dir}({\cal S}')=\text{dir}({\cal L}')\implies{\cal L}\ll{\cal L}'$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Se dice que dos variedades +\begin_inset Formula ${\cal L}$ +\end_inset + + y +\begin_inset Formula ${\cal L}'$ +\end_inset + + +\series bold +se cortan +\series default + o son +\series bold +incidentes +\series default + si +\begin_inset Formula ${\cal L}\cap{\cal L}'\neq\emptyset$ +\end_inset + +, y que +\series bold +se cruzan +\series default + si ni se cortan ni ninguna es débilmente paralela a la otra. + Propiedades: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\{{\cal L}_{i}\}_{i\in I}$ +\end_inset + + es una familia de variedades afines de +\begin_inset Formula ${\cal E}$ +\end_inset + + con +\begin_inset Formula ${\cal L}_{i}=P+W_{i}\forall i\in I$ +\end_inset + + y +\begin_inset Formula $\bigcap_{i\in I}{\cal L}_{i}\neq\emptyset$ +\end_inset + + entonces la intersección es una variedad afín con dirección +\begin_inset Formula $\bigcap_{i\in I}W_{i}$ +\end_inset + +. + +\begin_inset Formula +\[ +Q\in P+\bigcap_{i\in I}W_{i}\iff\forall i\in I,\overrightarrow{PQ}\in W_{i}\iff\forall i\in I,Q\in P+W_{i}={\cal L}_{i}\iff Q\in\bigcap_{i\in I}{\cal L}_{i} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\cap{\cal L}'\neq\emptyset\iff\overrightarrow{PP'}\in W+W'$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $Q\in{\cal L}\cap{\cal L}'\implies\overrightarrow{PP'}=\overrightarrow{PQ}+\overrightarrow{QP'}\in W+W'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\exists\vec{w}\in W,\vec{w}'\in W':\overrightarrow{PP'}=\vec{w}+\vec{w}'\implies P+\vec{w}=P+\overrightarrow{PP'}-\vec{w}'=P'-\vec{w}'\in{\cal L}\cap{\cal L}'$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dos variedades +\begin_inset Formula ${\cal L}=P+W$ +\end_inset + + y +\begin_inset Formula ${\cal L}'=P'+W'$ +\end_inset + + son +\series bold +complementarias +\series default + si lo son sus direcciones, es decir, si +\begin_inset Formula $V=W\oplus W'$ +\end_inset + +. + La intersección de dos variedades afines complementarias es un punto. + +\series bold +Demostración: +\series default + +\begin_inset Formula $\overrightarrow{PP'}\in V=W\oplus W'$ +\end_inset + +, luego se cortan, y +\begin_inset Formula $W\cap W'=\{0\}$ +\end_inset + +, luego +\begin_inset Formula $\dim({\cal L}\cap{\cal L}')=0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Suma de variedades +\end_layout + +\begin_layout Standard +Llamamos +\series bold +variedad afín engendrada +\series default + o +\series bold +generada +\series default + por +\begin_inset Formula $X\subseteq{\cal E}$ +\end_inset + + a la menor de las variedades que contienen a +\begin_inset Formula $X$ +\end_inset + +, es decir, la intersección de todas ellas, y se denota por +\begin_inset Formula ${\cal V}(X)$ +\end_inset + +. + Esta existe porque la intersección no es vacía (contiene a +\begin_inset Formula $X$ +\end_inset + +) y al menos +\begin_inset Formula ${\cal E}$ +\end_inset + + es una variedad que contiene a +\begin_inset Formula $X$ +\end_inset + +. + Dados +\begin_inset Formula $P_{1},\dots,P_{n}\in{\cal E}$ +\end_inset + +, se tiene que +\begin_inset Formula ${\cal V}(P_{1},\dots,P_{n})=P_{1}+<\overrightarrow{P_{1}P_{2}},\dots,\overrightarrow{P_{1}P_{n}}>$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $P_{1}+<\overrightarrow{P_{1}P_{2}},\dots,\overrightarrow{P_{1}P_{n}}>$ +\end_inset + + contiene a +\begin_inset Formula $P_{1},P_{2},\dots,P_{n}$ +\end_inset + +, luego contiene a +\begin_inset Formula ${\cal V}(X)$ +\end_inset + + por ser una de las variedades que se intersecan. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula ${\cal V}(P_{1},\dots,P_{n})$ +\end_inset + + pasa por +\begin_inset Formula $P_{1}$ +\end_inset + + y su dirección debe contener a los +\begin_inset Formula $\overrightarrow{P_{1}P_{j}}$ +\end_inset + + ( +\begin_inset Formula $2\leq j\leq n$ +\end_inset + +) y por tanto a +\begin_inset Formula $<\overrightarrow{P_{1}P_{2}},\dots,\overrightarrow{P_{1}P_{n}}>$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +suma +\series default + de +\begin_inset Formula $\{{\cal L}_{i}\}_{i\in I}$ +\end_inset + + es la variedad engendrada por su unión: +\begin_inset Formula $\sum_{i\in I}{\cal L}_{i}:={\cal V}\left(\bigcup_{i\in I}{\cal L}_{i}\right)$ +\end_inset + +. + Se tiene que dadas +\begin_inset Formula ${\cal L}=P+W$ +\end_inset + + y +\begin_inset Formula ${\cal L}'=P'+W'$ +\end_inset + +, entonces +\begin_inset Formula ${\cal L}+{\cal L}'=P+(W+W'+<\overrightarrow{PP'}>)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +La variedad a la derecha del igual contiene a +\begin_inset Formula $P+W={\cal L}$ +\end_inset + +, y como en esta podemos cambiar +\begin_inset Formula $P$ +\end_inset + + por +\begin_inset Formula $P'=P+\overrightarrow{PP'}$ +\end_inset + +, también contiene a +\begin_inset Formula $P'+W'={\cal L}'$ +\end_inset + +, luego contiene a la suma. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Evidentemente, +\begin_inset Formula $P\in{\cal L}+{\cal L}'$ +\end_inset + +. + Ahora bien, como +\begin_inset Formula ${\cal L},{\cal L}'\subseteq{\cal L}+{\cal L}'$ +\end_inset + +, entonces +\begin_inset Formula $W,W'\subseteq\text{dir}({\cal L}+{\cal L}')$ +\end_inset + +, y como +\begin_inset Formula $P,P'\in{\cal L}+{\cal L}'$ +\end_inset + +, entonces +\begin_inset Formula $\overrightarrow{PP'}\in\text{dir}({\cal L}+{\cal L}')$ +\end_inset + +, luego +\begin_inset Formula $W+W'+<\overrightarrow{PP'}>\subseteq\text{dir}({\cal L}+{\cal L}')$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Fórmulas de Grassmann: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\cap{\cal L}'\neq\emptyset\implies\dim({\cal L}+{\cal L}')=\dim({\cal L})+\dim({\cal L}')-\dim({\cal L}\cap{\cal L}')$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +En este caso, +\begin_inset Formula $\text{dir}({\cal L}\cap{\cal L}')=W\cap W'$ +\end_inset + +, y como +\begin_inset Formula $\overrightarrow{PP'}\in W+W'$ +\end_inset + +, entonces +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $W+W'+$ +\end_inset + + +\begin_inset Formula $<\overrightarrow{PP'}>=W+W'$ +\end_inset + + y +\begin_inset Formula +\[ +\begin{array}{c} +\dim({\cal L}+{\cal L}')=\dim(W+W')=\dim(W)+\dim(W')-\dim(W\cap W')=\\ +=\dim({\cal L})+\dim({\cal L}')-\dim({\cal L}\cap{\cal L}') +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}\cap{\cal L}'=\emptyset\implies\dim({\cal L}+{\cal L}')=\dim({\cal L})+\dim({\cal L}')-\dim(W\cap W')+1$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +En este caso, +\begin_inset Formula $\overrightarrow{PP'}\notin W+W'$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\begin{array}{c} +\dim({\cal L}+{\cal L}')=\dim(W+W'+\overrightarrow{PP'})=\dim(W+W')+1=\\ +=\dim(W)+\dim(W')-\dim(W\cap W')+1 +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Posición relativa de variedades +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula ${\cal L}_{i}=P_{i}+<\vec{v}_{i}>$ +\end_inset + + ( +\begin_inset Formula $i\in\{1,2\},\vec{v}_{i}\neq\vec{0}$ +\end_inset + +) dos rectas en un plano afín. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\vec{v}_{1}$ +\end_inset + + y +\begin_inset Formula $\vec{v}_{2}$ +\end_inset + + son proporcionales entonces +\begin_inset Formula ${\cal L}_{1}\parallel{\cal L}_{2}$ +\end_inset + +. + Si +\begin_inset Formula $\overrightarrow{P_{1}P_{2}}\in<\vec{v}_{1}>$ +\end_inset + +, son coincidentes; en otro caso son paralelas distintas. +\end_layout + +\begin_layout Itemize +En otro caso son subespacios complementarios y por tanto se cortan en un + punto. +\end_layout + +\begin_layout Standard +Si tenemos dos rectas en un espacio tridimensional, la discusión es similar + a cuando estamos en el plano afín, pero si las rectas no son paralelas, + sólo se cortan si +\begin_inset Formula $\overrightarrow{P_{1}P_{2}}\in<\vec{v}_{1},\vec{v}_{2}>$ +\end_inset + +, de lo contrario se cruzan. + Sean ahora tres rectas, sin ser dos de ellas coincidentes, en un plano + afín. +\end_layout + +\begin_layout Itemize +Si hay dos paralelas, digamos +\begin_inset Formula ${\cal L}_{1}\parallel{\cal L}_{2}$ +\end_inset + +, si +\begin_inset Formula $\vec{v}_{3}$ +\end_inset + + es proporcional a +\begin_inset Formula $\vec{v}_{1}$ +\end_inset + + y +\begin_inset Formula $\vec{v}_{2}$ +\end_inset + + tenemos tres paralelas distintas, de lo contrario +\begin_inset Formula ${\cal L}_{3}$ +\end_inset + + corta en un punto a cada una de las otras. +\end_layout + +\begin_layout Itemize +En otro caso, cada par de rectas se cortan en un punto. + Si dos de estos coinciden, también coinciden con el tercero, y de lo contrario + las rectas se cortan en puntos distintos dos a dos. +\end_layout + +\begin_layout Standard +Ahora, sean +\begin_inset Formula ${\cal L}=P+<\vec{v}>$ +\end_inset + + ( +\begin_inset Formula $\vec{v}\neq\vec{0}$ +\end_inset + +) y +\begin_inset Formula ${\cal P}=P'+W$ +\end_inset + + una recta y plano en un espacio afín tridimensional: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\vec{v}\in W$ +\end_inset + + entonces +\begin_inset Formula ${\cal L}\ll{\cal P}$ +\end_inset + +, y en particular, si +\begin_inset Formula $P\in{\cal P}$ +\end_inset + + entonces +\begin_inset Formula ${\cal L}\subseteq{\cal P}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\vec{v}\notin W$ +\end_inset + +, las variedades son complementarias, luego se cortan en un punto. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula ${\cal P}_{i}=P_{i}+W_{i}$ +\end_inset + + ( +\begin_inset Formula $i\in\{1,2\},\dim(W_{i})=2$ +\end_inset + +) dos planos en un espacio afín tridimensional. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $W_{1}=W_{2}$ +\end_inset + +, los planos son paralelos. + En particular, son coincidentes si +\begin_inset Formula $\overrightarrow{P_{1}P_{2}}\in W_{1}$ +\end_inset + +; de lo contrario son paralelos distintos. +\end_layout + +\begin_layout Itemize +En otro caso, se tiene que +\begin_inset Formula $\dim(W_{1}\cap W_{2})=1$ +\end_inset + + y +\begin_inset Formula $\dim(W_{1}+W_{2})=3$ +\end_inset + +, por lo que +\begin_inset Formula $\overrightarrow{P_{1}P_{2}}\in W_{1}+W_{2}$ +\end_inset + + y los planos se cortan en una recta de dirección +\begin_inset Formula $W_{1}\cap W_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si ahora consideramos tres planos ninguno coincidente con ningún otro, entonces: +\end_layout + +\begin_layout Itemize +Si hay dos paralelos, digamos +\begin_inset Formula ${\cal P}_{1}\parallel{\cal P}_{2}$ +\end_inset + +, si +\begin_inset Formula $W_{3}=W_{1}$ +\end_inset + + tenemos tres planos paralelos distintos; de lo contrario +\begin_inset Formula ${\cal P}_{3}$ +\end_inset + + corta en una recta a cada uno de los otros. +\end_layout + +\begin_layout Itemize +En otro caso, sea +\begin_inset Formula ${\cal L}={\cal P}_{1}\cap{\cal P}_{2}=P+W\neq\emptyset$ +\end_inset + +, si +\begin_inset Formula ${\cal L}\subseteq{\cal P}_{3}$ +\end_inset + +, entonces +\begin_inset Formula ${\cal L}={\cal P}_{1}\cap{\cal P}_{2}\cap{\cal P}_{3}$ +\end_inset + + y los tres planos se cortan en una recta. + Si +\begin_inset Formula ${\cal L}\ll{\cal P}_{3}$ +\end_inset + + ( +\begin_inset Formula $W\subseteq W_{3}$ +\end_inset + +) entonces +\begin_inset Formula $W\subseteq W_{1}\cap W_{3}$ +\end_inset + +, y como +\begin_inset Formula $\dim(W_{1}\cap W_{3})=\dim(W)=1$ +\end_inset + +, entonces +\begin_inset Formula $W=W_{1}\cap W_{3}$ +\end_inset + + y del mismo modo +\begin_inset Formula $W=W_{2}\cap W_{3}$ +\end_inset + +, luego los planos se cortan dos a dos en paralelas distintas. + Finalmente, si +\begin_inset Formula ${\cal L}$ +\end_inset + + y +\begin_inset Formula ${\cal P}_{3}$ +\end_inset + + se cortan en un punto, los tres planos se cortan en este. +\end_layout + +\begin_layout Section +Ecuaciones de variedades afines +\end_layout + +\begin_layout Standard +En esta sección asumimos +\begin_inset Formula $\dim({\cal E})=n$ +\end_inset + + e identificamos los vectores con sus coordenadas en +\begin_inset Formula ${\cal B}$ +\end_inset + + y los puntos con sus coordenadas en +\begin_inset Formula $\Re:=(O,{\cal B})$ +\end_inset + +. + Sea +\begin_inset Formula ${\cal L}=P+W$ +\end_inset + + con +\begin_inset Formula $W=<\vec{v}_{1},\dots,\vec{v}_{m}>$ +\end_inset + +, los puntos de +\begin_inset Formula ${\cal L}$ +\end_inset + + tienen la forma +\begin_inset Formula $X=P+\lambda_{1}\vec{v}_{1}+\dots+\lambda_{m}\vec{v}_{m}$ +\end_inset + +, con cada +\begin_inset Formula $\lambda_{i}\in K$ +\end_inset + +. + Si +\begin_inset Formula $[X]_{\Re}=(x_{1},\dots,x_{n})$ +\end_inset + +, +\begin_inset Formula $[P]_{\Re}=(p_{1},\dots,p_{n})$ +\end_inset + + y +\begin_inset Formula $[\vec{v}_{i}]_{{\cal B}}=(v_{1i},\dots,v_{ni})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x_{1} & = & p_{1}+\lambda_{1}v_{11}+\dots+\lambda_{m}v_{1m}\\ + & \vdots\\ +x_{n} & = & p_{n}+\lambda_{1}v_{n1}+\dots+\lambda_{m}v_{nm} +\end{array}\right. +\] + +\end_inset + +Estas son las +\series bold +ecuaciones paramétricas +\series default + de +\begin_inset Formula ${\cal L}$ +\end_inset + + en +\begin_inset Formula $\Re$ +\end_inset + +, y no son únicas. + Si +\begin_inset Formula $\vec{v}_{1},\dots,\vec{v}_{m}$ +\end_inset + + son li +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +ne +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +al +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +men +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +te independientes entonces el número de parámetros es la dimensión de +\begin_inset Formula $W$ +\end_inset + + y de +\begin_inset Formula ${\cal L}$ +\end_inset + +. + Si +\begin_inset Formula $W$ +\end_inset + + viene dado por ecuaciones cartesianas en +\begin_inset Formula ${\cal B}$ +\end_inset + + representadas por un sistema homogéneo con matriz de coeficientes +\begin_inset Formula $A$ +\end_inset + +, es decir, si +\begin_inset Formula $\vec{v}\in W\iff A\vec{v}=0$ +\end_inset + +, entonces +\begin_inset Formula $X\in{\cal L}\iff\overrightarrow{PX}\in W\iff A(X-P)=0\iff AX=AP$ +\end_inset + +. + El resultado es un sistema de ecuaciones, denominadas +\series bold +ecuaciones cartesianas +\series default + o +\series bold +implícitas +\series default + de +\begin_inset Formula ${\cal L}$ +\end_inset + + en +\begin_inset Formula $\Re$ +\end_inset + +, que no es único, y cuyas soluciones son los puntos de +\begin_inset Formula ${\cal L}$ +\end_inset + +. + Si +\begin_inset Formula $r=\text{rg}A$ +\end_inset + + (el rango del sistema), entonces +\begin_inset Formula $\dim({\cal L})=\dim({\cal E})-r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para obtener las paramétricas (o las implícitas) de +\begin_inset Formula $W$ +\end_inset + + a partir de las correspondientes de +\begin_inset Formula ${\cal L}$ +\end_inset + +, basta anular los términos independientes en cada caso. + Así, para obtener las paramétricas de la recta paralela a +\begin_inset Formula ${\cal L}$ +\end_inset + + por +\begin_inset Formula $P'$ +\end_inset + +, basta sustituir las coordenadas de +\begin_inset Formula $P$ +\end_inset + + ( +\begin_inset Formula $p_{1},\dots,p_{n}$ +\end_inset + +) por las de +\begin_inset Formula $P'$ +\end_inset + +en las paramétricas de +\begin_inset Formula ${\cal L}$ +\end_inset + +. + Para obtener las implícitas, si las de +\begin_inset Formula ${\cal L}$ +\end_inset + + son +\begin_inset Formula $\left(\begin{array}{c|c} +A & B\end{array}\right)$ +\end_inset + +, las de la paralela son +\begin_inset Formula $\left(\begin{array}{c|c} +A & AP'\end{array}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para obtener ecuaciones paramétricas a partir de implícitas, resolvemos + el sistema +\begin_inset Formula $(A|B)$ +\end_inset + + en función de parámetros, y para pasar de paramétricas a implícitas (por + ejemplo, el sistema de arriba), consideramos la matriz +\begin_inset Formula +\[ +\left(\begin{array}{ccc|c} +v_{11} & \cdots & v_{1m} & x_{1}-p_{1}\\ +\vdots & & \vdots & \vdots\\ +v_{n1} & \cdots & v_{nm} & x_{n}-p_{n} +\end{array}\right) +\] + +\end_inset + +y se trata de discutir el sistema que forma. + Lo mejor en general es hacerlo por menores, pues si los +\begin_inset Formula $m$ +\end_inset + + vectores iniciales son linealmente independientes, el rango de la matriz + debe ser +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para obtener la intersección de dos variedades dadas sus ecuaciones implícitas, + basta juntarlas. + También, si conocemos las implícitas de una y las paramétricas de la segunda, + podemos sustituir el +\begin_inset Quotes cld +\end_inset + +punto genérico +\begin_inset Quotes crd +\end_inset + + que nos dan las paramétricas de la segunda y sustituirlo en la primera, + obteniendo como resultado las condiciones para que un punto de la segunda + esté además en la primera. + Por otro lado, si tenemos las paramétricas de dos variedades y queremos + hallar su suma, basta recordar que +\begin_inset Formula ${\cal L}+{\cal L}'=P+(W+W'+<\overrightarrow{PP'}>)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Ejemplos en dimensiones bajas +\end_layout + +\begin_layout Standard +Una recta en un plano afín es un hiperplano, por lo que viene dada por una + sóla ecuación +\begin_inset Formula +\[ +\left|\begin{array}{cc} +v_{1} & x_{1}-p_{1}\\ +v_{2} & x_{2}-p_{2} +\end{array}\right|=0 +\] + +\end_inset + +Si +\begin_inset Formula $(p_{1},p_{2})\neq(q_{1},q_{2})$ +\end_inset + +, la recta que los une tiene como ecuación +\begin_inset Formula +\[ +\left|\begin{array}{cc} +q_{1}-p_{1} & x_{1}-p_{1}\\ +q_{2}-p_{2} & x_{2}-p_{2} +\end{array}\right|=\left|\begin{array}{ccc} +1 & 1 & 1\\ +p_{1} & q_{1} & x_{1}\\ +p_{2} & q_{2} & x_{2} +\end{array}\right|=0 +\] + +\end_inset + +lo que sirve para comprobar si tres puntos están alineados. + Decimos que unos puntos son +\series bold +coplanarios +\series default + si existe un plano que los contiene a todos. + Los planos en un espacio tridimensional son hiperplanos, y su ecuación + implícita es +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +v_{1} & w_{1} & x_{1}-p_{1}\\ +v_{2} & w_{2} & x_{2}-p_{2}\\ +v_{3} & w_{3} & x_{3}-p_{3} +\end{array}\right|=0 +\] + +\end_inset + +Así, si tres puntos +\begin_inset Formula $P$ +\end_inset + +, +\begin_inset Formula $Q$ +\end_inset + + y +\begin_inset Formula $R$ +\end_inset + + no están alineados, forman un plano dado por +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +q_{1}-p_{1} & r_{1}-p_{1} & x_{1}-p_{1}\\ +q_{2}-p_{2} & r_{2}-p_{2} & x_{2}-p_{2}\\ +q_{3}-p_{3} & r_{3}-p_{3} & x_{3}-p_{3} +\end{array}\right|=\left|\begin{array}{cccc} +1 & 1 & 1 & 1\\ +p_{1} & q_{1} & r_{1} & s_{1}\\ +p_{2} & q_{2} & r_{2} & s_{2}\\ +p_{3} & q_{3} & r_{3} & s_{3} +\end{array}\right|=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +En un espacio tridimensional, el punto +\begin_inset Formula $(x_{1},x_{2},x_{3})$ +\end_inset + + está en la recta +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $\ell=(p_{1},p_{2},p_{3})+$ +\end_inset + + +\begin_inset Formula $<(v_{1},v_{2},v_{3})>$ +\end_inset + + cuando +\begin_inset Formula $(v_{1},v_{2},v_{3})$ +\end_inset + + y +\begin_inset Formula $(x_{1}-p_{1},x_{2}-p_{2},x_{3}-p_{3})$ +\end_inset + + sean proporcionales, lo que nos lleva a las +\series bold +ecuaciones continuas +\series default +: +\begin_inset Formula +\[ +\frac{x_{1}-p_{1}}{v_{1}}=\frac{x_{2}-p_{2}}{v_{2}}=\frac{x_{3}-p_{3}}{v_{3}} +\] + +\end_inset + +Si una de las coordenadas del vector director es 0, este caso debe ser tratado + de forma especial. + A partir de estas ecuaciones podemos obtener las implícitas. + El +\series bold +haz de planos +\series default + que contienen a +\begin_inset Formula $\ell$ +\end_inset + + es el conjunto de todos los planos que la contienen. + Así, si +\begin_inset Formula +\[ +\ell\equiv\left\{ \begin{array}{rcl} +ax+by+cz+d & = & 0\\ +a'x+b'y+c'z+d' & = & 0 +\end{array}\right. +\] + +\end_inset + +su haz de planos está formado por las combinaciones lineales de estas ecuaciones +, es decir, el plano +\begin_inset Formula $a'x+b'y+c'z+d'=0$ +\end_inset + + y los planos +\begin_inset Formula $(ax+by+cz+d)+\mu(a'x+b'y+c'z+d)=0$ +\end_inset + + con +\begin_inset Formula $\mu\in K$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
