diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /gae/n1b.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'gae/n1b.lyx')
| -rw-r--r-- | gae/n1b.lyx | 1010 |
1 files changed, 1010 insertions, 0 deletions
diff --git a/gae/n1b.lyx b/gae/n1b.lyx new file mode 100644 index 0000000..7f06d5c --- /dev/null +++ b/gae/n1b.lyx @@ -0,0 +1,1010 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +A lo largo del capítulo, cuando no haya ambigüedad, identificamos el espacio + afín +\begin_inset Formula $({\cal E},V,\varphi)$ +\end_inset + + con el conjunto +\begin_inset Formula ${\cal E}$ +\end_inset + +. + Un +\series bold +espacio afín +\series default + sobre un cuerpo +\begin_inset Formula $K$ +\end_inset + + es una terna +\begin_inset Formula $({\cal E},V,\varphi)$ +\end_inset + + formada por un conjunto +\begin_inset Formula ${\cal E}\neq0$ +\end_inset + +, cuyos elementos llamamos +\series bold +puntos +\series default +; un +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + +, llamado +\series bold +espacio vectorial asociado +\series default + a o +\series bold +de direcciones +\series default + de +\begin_inset Formula $({\cal E},V,\varphi)$ +\end_inset + +, y una aplicación +\begin_inset Formula $\varphi:{\cal E}\times V\rightarrow{\cal E}$ +\end_inset + +, que escribimos como +\begin_inset Formula $P+\vec{v}:=\varphi(P,\vec{v})$ +\end_inset + +, que cumplen que +\begin_inset Formula $\forall P,Q\in{\cal E},\vec{v},\vec{w}\in V$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(P+\vec{v})+\vec{w}=P+(\vec{v}+\vec{w})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P+\vec{0}=P$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists!\overrightarrow{PQ}\in V:P+\overrightarrow{PQ}=Q$ +\end_inset + +. + Decimos que +\begin_inset Formula $P$ +\end_inset + + es el +\series bold +origen +\series default + y +\begin_inset Formula $Q$ +\end_inset + + el +\series bold +extremo +\series default + del vector +\begin_inset Formula $\overrightarrow{PQ}$ +\end_inset + +. + +\begin_inset Formula $\overrightarrow{P(P+\vec{v})}=\vec{v}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +dimensión +\series default + de +\begin_inset Formula ${\cal E}$ +\end_inset + + a la de su espacio vectorial asociado, +\begin_inset Formula $\dim({\cal E})=\dim_{K}(V)$ +\end_inset + +. + Llamamos +\series bold +rectas afines +\series default + a los espacios afines de dimensión 1, +\series bold +planos afines +\series default + a los de dimensión 2 y +\series bold +espacios (tridimensionales) afines +\series default + a los de dimensión 3. +\end_layout + +\begin_layout Standard +Tenemos que, dado +\begin_inset Formula $O\in{\cal E}$ +\end_inset + +, las aplicaciones +\begin_inset Formula $V\rightarrow{\cal E}$ +\end_inset + + y +\begin_inset Formula ${\cal E}\rightarrow V$ +\end_inset + + dadas, respectivamente, por +\begin_inset Formula $\vec{v}\mapsto O+\vec{v}$ +\end_inset + + y +\begin_inset Formula $P\mapsto\overrightarrow{OP}$ +\end_inset + + son biyecciones una inversa de la otra. + +\series bold +Demostración: +\series default + +\begin_inset Formula $\vec{v}\mapsto O+\vec{v}\mapsto\overrightarrow{O(O+\vec{v})}=\vec{v}$ +\end_inset + +; +\begin_inset Formula $P\mapsto\overrightarrow{OP}\mapsto O+\overrightarrow{OP}=P$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Esta biyección permite dar a +\begin_inset Formula ${\cal E}$ +\end_inset + + una estructura de espacio vectorial definida por +\begin_inset Formula $P\hat{+}Q=O+(\overrightarrow{OP}+\overrightarrow{OQ})$ +\end_inset + + y +\begin_inset Formula $\lambda\cdot P=O+\lambda\overrightarrow{OP}$ +\end_inset + +, a la que llamamos +\series bold +vectorialización +\series default + de +\begin_inset Formula ${\cal E}$ +\end_inset + + respecto a +\begin_inset Formula $O\in{\cal E}$ +\end_inset + +, que es isomorfa a +\begin_inset Formula $V$ +\end_inset + + y cuyo elemento neutro es +\begin_inset Formula $O$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Algunos espacios afines: +\end_layout + +\begin_layout Itemize + +\series bold +Espacio afín trivial: +\series default + De dimensión 0, con un solo punto, pues dados +\begin_inset Formula $P,Q\in{\cal E}$ +\end_inset + +, +\begin_inset Formula $Q=P+\overrightarrow{PQ}=P+\vec{0}=P$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Estructura afín de un espacio vectorial: +\series default + Dado un +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + +, existe un espacio afín +\begin_inset Formula $(V,V,\varphi)$ +\end_inset + + donde la suma es la suma usual de vectores. + Podemos entonces escribir +\begin_inset Formula $\overrightarrow{PQ}=Q-P$ +\end_inset + +. + Llamamos +\series bold +espacio afín numérico +\series default + de dimensión +\begin_inset Formula $n$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula ${\cal E}^{n}(K)$ +\end_inset + +, a la estructura afín de +\begin_inset Formula $K^{n}$ +\end_inset + +. + +\begin_inset Formula ${\cal E}^{2}(\mathbb{R})$ +\end_inset + + y +\begin_inset Formula ${\cal E}^{3}(\mathbb{R})$ +\end_inset + + son pues el plano y el espacio afín usuales. +\end_layout + +\begin_layout Subsection +Propiedades +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overrightarrow{PQ}=\vec{0}\iff P=Q$ +\end_inset + +; +\begin_inset Formula $\overrightarrow{PP}=\vec{0}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +\overrightarrow{PQ}=\vec{0}\implies Q=P+\overrightarrow{PQ}=P+\vec{0}=P\\ +Q+\vec{0}=Q\implies\overrightarrow{QQ}=\vec{0} +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Relación de Chasles: +\series default + +\begin_inset Formula $\overrightarrow{P_{1}P_{2}}+\overrightarrow{P_{2}P_{3}}+\dots+\overrightarrow{P_{n-1}P_{n}}=\overrightarrow{P_{1}P_{n}}$ +\end_inset + +. +\begin_inset Formula +\[ +P+(\overrightarrow{PQ}+\overrightarrow{QR})=(P+\overrightarrow{PQ})+\overrightarrow{QR}=Q+\overrightarrow{QR}=R +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overrightarrow{PQ}=-\overrightarrow{QP}$ +\end_inset + +. +\begin_inset Formula +\[ +\overrightarrow{PQ}+\overrightarrow{QP}=\overrightarrow{PP}=\overrightarrow{0} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Cancelación: +\series default + +\begin_inset Formula $P+\vec{v}=P+\vec{w}\implies\vec{v}=\vec{w}$ +\end_inset + +; +\begin_inset Formula $P+\vec{v}=Q+\vec{v}\implies P=Q$ +\end_inset + +; +\begin_inset Formula $\overrightarrow{PQ}=\overrightarrow{PR}\iff Q=R\iff\overrightarrow{QP}=\overrightarrow{RP}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +P+\vec{v}=P+\vec{w}\implies\vec{v}=\overrightarrow{P(P+\vec{v})}=\overrightarrow{P(P+\vec{w})}=\vec{w}\\ +P+\vec{v}=Q+\vec{v}\implies P=P+\vec{v}-\vec{v}=Q+\vec{v}-\vec{v}=Q\\ +\overrightarrow{PQ}=\overrightarrow{PR}\implies Q=P+\overrightarrow{PQ}=P+\overrightarrow{PR}=R +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overrightarrow{(P+\vec{v})(Q+\vec{w})}=\overrightarrow{PQ}+\vec{w}-\vec{v}$ +\end_inset + +; +\begin_inset Formula $\overrightarrow{P(Q+\vec{w})}=\overrightarrow{PQ}+\vec{w}$ +\end_inset + +; +\begin_inset Formula $\overrightarrow{(P+\vec{v})Q}=\overrightarrow{PQ}-\vec{v}$ +\end_inset + +; +\begin_inset Formula $\overrightarrow{(P+\vec{v})P}=-\vec{v}$ +\end_inset + +. +\begin_inset Formula +\[ +(P+\vec{v})+(\overrightarrow{PQ}+\vec{w}-\vec{v})=P+\overrightarrow{PQ}+\vec{w}=Q+\vec{w} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P+\vec{v}=Q+\vec{w}\iff\overrightarrow{PQ}=\vec{v}-\vec{w}$ +\end_inset + +. +\begin_inset Formula +\[ +P+\vec{v}=Q+\vec{w}\iff\overrightarrow{(P+\vec{v})(Q+\vec{w})}=\overrightarrow{PQ}+\vec{w}-\vec{v}=\overrightarrow{0}\iff\overrightarrow{PQ}=\vec{w}-\vec{v} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Regla del paralelogramo: +\series default + +\begin_inset Formula $\overrightarrow{PQ}=\overrightarrow{P'Q'}\iff\overrightarrow{PP'}=\overrightarrow{QQ'}$ +\end_inset + + +\begin_inset Formula +\[ +\overrightarrow{PQ}+\overrightarrow{QQ'}=\overrightarrow{PQ'}=\overrightarrow{PP'}+\overrightarrow{P'Q'} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Sistemas de referencia y coordenadas +\end_layout + +\begin_layout Standard +Un +\series bold +sistema de referencia +\series default + (o +\series bold +referencial +\series default +) +\series bold + cartesiano +\series default + de +\begin_inset Formula ${\cal E}$ +\end_inset + + es un par +\begin_inset Formula $\Re=(O,{\cal B})$ +\end_inset + + formado por un +\series bold +origen +\series default + +\begin_inset Formula $O\in{\cal E}$ +\end_inset + + y una base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + +. + Las +\series bold +coordenadas (cartesianas) +\series default + de +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + en +\begin_inset Formula $\Re$ +\end_inset + + son las del vector +\begin_inset Formula $\overrightarrow{OP}$ +\end_inset + + respecto de la base +\begin_inset Formula ${\cal B}$ +\end_inset + +, y se denotan +\begin_inset Formula $[P]_{\Re}:=[\overrightarrow{OP}]_{{\cal B}}$ +\end_inset + +. + En particular +\begin_inset Formula $[O]_{\Re}=(0,\dots,0)$ +\end_inset + +, +\begin_inset Formula $[P+\vec{v}]_{\Re}=[P]_{\Re}+[\vec{v}]_{{\cal B}}$ +\end_inset + + y +\begin_inset Formula $[\overrightarrow{PQ}]_{{\cal B}}=[Q]_{\Re}-[P]_{\Re}$ +\end_inset + +. + Cuando se trabaja con un único referencial, se omiten los subíndices +\begin_inset Formula $\Re$ +\end_inset + + y +\begin_inset Formula ${\cal B}$ +\end_inset + + en los corchetes, o incluso se pueden identificar los puntos y vectores + con sus coordenadas, siempre que se indique esto al principio de trabajar + con coordenadas, y podemos entonces escribir +\begin_inset Formula $P=(p_{1},\dots,p_{n})$ +\end_inset + + y +\begin_inset Formula $\vec{v}=(v_{1},\dots,v_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para cambiar coordenadas entre dos referenciales +\begin_inset Formula $\Re=(O,{\cal B})$ +\end_inset + + y +\begin_inset Formula $\Re'=(O',{\cal B}')$ +\end_inset + + de +\begin_inset Formula ${\cal E}$ +\end_inset + +, si llamamos +\begin_inset Formula $X_{0}:=[O]_{\Re'}=[\overrightarrow{O'O}]_{{\cal B}'}$ +\end_inset + + y +\begin_inset Formula $M:=M_{{\cal B}'{\cal B}}$ +\end_inset + +, se tiene que: +\begin_inset Formula +\[ +\left.\begin{array}{c} +X=[P]_{\Re}=[\overrightarrow{OP}]_{{\cal B}}\\ +X'=[P]_{\Re'}=[\overrightarrow{O'P}]_{{\cal B}'} +\end{array}\right\} \implies X'=[\overrightarrow{O'P}]_{{\cal B}'}=[\overrightarrow{O'O}]_{{\cal B}'}+[\overrightarrow{OP}]_{{\cal B}'}=X_{0}+M\cdot[\overrightarrow{OP}]_{{\cal B}}=X_{0}+MX +\] + +\end_inset + +Si +\begin_inset Formula $X=(x_{1},\dots,x_{n})$ +\end_inset + +, +\begin_inset Formula $X'=(x'_{1},\dots,x'_{n})$ +\end_inset + +, +\begin_inset Formula $X_{0}=(b_{1},\dots,b_{n})$ +\end_inset + + y +\begin_inset Formula $M=(a_{ij})$ +\end_inset + +, llamamos +\series bold +ecuaciones de cambio de coordenadas +\series default + a las siguientes: +\begin_inset Formula +\[ +\left\{ \begin{array}{ccc} +x'_{1} & = & b_{1}+a_{11}x_{1}+\dots+a_{1n}x_{n}\\ + & \vdots\\ +x'_{n} & = & b_{n}+a_{n1}x_{1}+\dots+a_{nn}x_{n} +\end{array}\right. +\] + +\end_inset + +Podemos emplear la expresión matricial equivalente: +\begin_inset Formula +\[ +\left(\begin{array}{c} +1\\ +x'_{1}\\ +\vdots\\ +x'_{n} +\end{array}\right)=\left(\begin{array}{cccc} +1 & 0 & \cdots & 0\\ +b_{1} & a_{11} & \cdots & a_{1n}\\ +\vdots & \vdots & \ddots & \vdots\\ +b_{n} & a_{n1} & \cdots & a_{nn} +\end{array}\right)\left(\begin{array}{c} +1\\ +x_{1}\\ +\vdots\\ +x_{n} +\end{array}\right) +\] + +\end_inset + +O simplificadamente +\begin_inset Formula +\[ +\left(\begin{array}{c} +1\\ +\hline X' +\end{array}\right)=\left(\begin{array}{c|c} +1 & 0\\ +\hline X_{0} & M +\end{array}\right)\left(\begin{array}{c} +1\\ +\hline X +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Rectas y puntos alineados +\end_layout + +\begin_layout Standard +La +\series bold +recta +\series default + que pasa por +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + con +\series bold +dirección +\series default + +\begin_inset Formula $<\vec{v}>$ +\end_inset + +, o +\series bold +vector director +\series default + +\begin_inset Formula $\vec{v}$ +\end_inset + +, es el conjunto +\begin_inset Formula $P+<\vec{v}>=\{P+\lambda\vec{v}\}_{\lambda\in K}$ +\end_inset + +. + Dos rectas +\begin_inset Formula $l$ +\end_inset + + y +\begin_inset Formula $l'$ +\end_inset + + son +\series bold +paralelas +\series default + ( +\begin_inset Formula $l\parallel l'$ +\end_inset + +) si sus vectores directores son proporcionales. + Propiedades: +\begin_inset Formula $\forall X\in{\cal E},l=P+<\vec{v}>$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\in l\iff\exists\lambda\in K:\overrightarrow{PX}=\lambda\vec{v}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall r\neq0,l=P+<r\vec{v}>$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall P'\in l,l=P'+<\vec{v}>$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall Q\in{\cal E},\exists!r:Q\in r\parallel l$ +\end_inset + +; +\begin_inset Formula $r:=Q+<\vec{v}>$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Recta que pasa por +\series default + +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +: +\begin_inset Formula $\forall A,B\in{\cal E},A\neq B,\exists!r:A,B\in r$ +\end_inset + +; +\begin_inset Formula $r:=AB:=A+<\overrightarrow{AB}>$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una serie de puntos de +\begin_inset Formula ${\cal E}$ +\end_inset + + están +\series bold +alineados +\series default + si existe una recta que los contiene a todos. +\end_layout + +\begin_layout Subsection +Puntos medios y razón simple +\end_layout + +\begin_layout Standard +Si en +\begin_inset Formula $K$ +\end_inset + + se tiene que +\begin_inset Formula $2=1+1\neq0$ +\end_inset + +, se define el +\series bold +punto medio +\series default + de +\begin_inset Formula $A,B\in{\cal E}$ +\end_inset + + como +\begin_inset Formula +\[ +\frac{A+B}{2}:=A+\frac{1}{2}\overrightarrow{AB} +\] + +\end_inset + +Esto es simplemente una notación, pues no hemos definido suma ni producto + por escalares en +\begin_inset Formula ${\cal E}$ +\end_inset + +. + Propiedades: +\begin_inset Formula $\forall A,B\in{\cal E}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $M=\frac{A+B}{2}\iff\overrightarrow{AB}=2\overrightarrow{AM}\iff B=A+2\overrightarrow{AM}\iff\overrightarrow{MA}+\overrightarrow{MB}=\vec{0}$ +\end_inset + +. +\begin_inset Formula +\[ +\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{MA}+\overrightarrow{AB}=2\overrightarrow{MA}+\overrightarrow{AB}=2\overrightarrow{MA}+2\overrightarrow{AM}=2\overrightarrow{MM}=\vec{0} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{A+B}{2}=\frac{B+A}{2}$ +\end_inset + +. +\begin_inset Formula +\[ +\frac{A+B}{2}=A+\frac{1}{2}\overrightarrow{AB}=B+\overrightarrow{BA}-\frac{1}{2}\overrightarrow{BA}=B+\frac{1}{2}\overrightarrow{BA}=\frac{B+A}{2} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{A+B}{2}=\frac{A+B'}{2}\iff B=B'$ +\end_inset + +. +\begin_inset Formula +\[ +A+\frac{1}{2}\overrightarrow{AB}=A+\frac{1}{2}\overrightarrow{AB'}\iff\overrightarrow{AB}=\overrightarrow{AB'}\iff B=B' +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{(A+\vec{v})+(B+\vec{w})}{2}=\frac{A+B}{2}+\frac{\vec{v}+\vec{w}}{2}$ +\end_inset + + +\begin_inset Formula +\[ +A+\vec{v}+\frac{1}{2}\overrightarrow{(A+\vec{v})(B+\vec{w})}=A+\vec{v}+\frac{1}{2}(\overrightarrow{AB}+\vec{w}-\vec{v})=\left(A+\frac{1}{2}\overrightarrow{AB}\right)+\frac{1}{2}(\vec{v}+\vec{w}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados tres puntos alineados +\begin_inset Formula $A,B,C$ +\end_inset + + con +\begin_inset Formula $A\neq B$ +\end_inset + + y +\begin_inset Formula $C\in AB$ +\end_inset + +, llamamos +\series bold +razón simple +\series default + de +\begin_inset Formula $A,B,C$ +\end_inset + + al único +\begin_inset Formula $\lambda\in K$ +\end_inset + + con +\begin_inset Formula $\overrightarrow{AC}=\lambda\overrightarrow{AB}$ +\end_inset + +, y escribimos +\begin_inset Formula $\lambda=(A,B,C)$ +\end_inset + +. + +\begin_inset Formula $(A,B,A)=0$ +\end_inset + + y +\begin_inset Formula $(A,B,B)=1$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
