diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /gae/n2.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'gae/n2.lyx')
| -rw-r--r-- | gae/n2.lyx | 1978 |
1 files changed, 1978 insertions, 0 deletions
diff --git a/gae/n2.lyx b/gae/n2.lyx new file mode 100644 index 0000000..d5c7289 --- /dev/null +++ b/gae/n2.lyx @@ -0,0 +1,1978 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ +\end_inset + + es +\series bold +afín +\series default + si existe +\begin_inset Formula $\overrightarrow{f}:V\rightarrow V'$ +\end_inset + + tal que para +\begin_inset Formula $P\in{\cal E},\vec{v}\in V$ +\end_inset + +, +\begin_inset Formula $f(P+\vec{v})=f(P)+\overrightarrow{f}(\vec{v})$ +\end_inset + +, es decir, +\begin_inset Formula $\overrightarrow{f}(\vec{v})=\overrightarrow{f(P)f(P+\vec{v})}$ +\end_inset + +. + Así, +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + queda determinada por +\begin_inset Formula $f$ +\end_inset + + y se le llama +\series bold +aplicación lineal asociada +\series default + a +\begin_inset Formula $f$ +\end_inset + +. + Las aplicaciones afines +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + + son +\series bold +transformaciones afines +\series default + de +\begin_inset Formula ${\cal E}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula ${\cal E}$ +\end_inset + + y +\begin_inset Formula ${\cal E}'$ +\end_inset + + tienen dimensión finita siendo +\begin_inset Formula $\Re=(O;{\cal B}=\{\vec{v}_{1},\dots,\vec{v}_{n}\})$ +\end_inset + + y +\begin_inset Formula $\Re'=(O';{\cal B}')$ +\end_inset + + referenciales cartesianos de +\begin_inset Formula ${\cal E}$ +\end_inset + + y +\begin_inset Formula ${\cal E}'$ +\end_inset + +, sea +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ +\end_inset + + con +\begin_inset Formula $X_{0}=[f(O)]_{\Re'}=[\overrightarrow{O'f(O)}]_{{\cal B}'}$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + dada por +\begin_inset Formula $M=M_{{\cal B}'{\cal B}}(\overrightarrow{f})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +[f(X)]_{\Re'}=[f(O)+\overrightarrow{f}(\overrightarrow{OX})]_{\Re'}=[f(O)]_{\Re'}+[\overrightarrow{f}(\overrightarrow{OX})]_{{\cal B}}=X_{0}+M[X]_{\Re} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Lo que nos da la +\series bold +representación matricial +\series default + o las +\series bold +ecuaciones +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\Re$ +\end_inset + + y +\begin_inset Formula $\Re'$ +\end_inset + + como +\begin_inset Formula $X'=X_{0}+MX$ +\end_inset + + o +\begin_inset Formula +\[ +\left(\begin{array}{c} +1\\ +\hline X' +\end{array}\right)=\left(\begin{array}{c|c} +1 & 0\\ +\hline X_{0} & M +\end{array}\right)\left(\begin{array}{c} +1\\ +\hline X +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Propiedades +\end_layout + +\begin_layout Enumerate +Dados +\begin_inset Formula $f,g:{\cal E}\rightarrow{\cal E}'$ +\end_inset + +, +\begin_inset Formula $\exists P\in{\cal E}:f(P)=g(P)\land\overrightarrow{f}=\overrightarrow{g}\implies f=g$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Dado un +\begin_inset Formula $Q\in{\cal E}$ +\end_inset + + arbitrario, +\begin_inset Formula $f(Q)=f(P)+\overrightarrow{f}(\overrightarrow{PQ})=g(P)+\overrightarrow{g}(\overrightarrow{PQ})=g(Q)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dados +\begin_inset Formula $P\in{\cal E}$ +\end_inset + +, +\begin_inset Formula $P'\in{\cal E}'$ +\end_inset + + y +\begin_inset Formula $\phi:V\rightarrow V'$ +\end_inset + + vectorial, existe una única aplicación afín +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ +\end_inset + + con +\begin_inset Formula $f(P)=P'$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{f}=\phi$ +\end_inset + +, dada por +\begin_inset Formula $f(Q):=P'+\phi(\overrightarrow{PQ})$ +\end_inset + +. +\begin_inset Formula +\[ +f(Q+\vec{v})=P'+\phi(\overrightarrow{P(Q+\vec{v})})=P'+\phi(\overrightarrow{PQ}+\vec{v})=P'+\phi(\overrightarrow{PQ})+\phi(\vec{v})=f(Q)+\phi(\vec{v}) +\] + +\end_inset + +por lo que es afín. + Además, +\begin_inset Formula $f(P)=P'+\phi(\overrightarrow{PP})=P'$ +\end_inset + +, y la unicidad se desprende del apartado anterior. +\end_layout + +\begin_layout Enumerate +La composición de aplicaciones afines +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es afín, y +\begin_inset Formula $\overrightarrow{g\circ f}=\overrightarrow{g}\circ\overrightarrow{f}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula ${\cal E}\overset{f}{\rightarrow}{\cal E}'\overset{g}{\rightarrow}{\cal E}''$ +\end_inset + +, para +\begin_inset Formula $P\in{\cal E},\vec{v}\in V$ +\end_inset + +, +\begin_inset Formula +\[ +(g\circ f)(P+\vec{v})=g(f(P)+\overrightarrow{f}(\vec{v}))=g(f(P))+\overrightarrow{g}(\overrightarrow{f}(\vec{v}))=(g\circ f)(P)+(\overrightarrow{g}\circ\overrightarrow{f})(\vec{v}) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es inyectiva si y sólo si lo es +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dados +\begin_inset Formula $P\in{\cal E},\vec{v}\in\text{Nuc}(\overrightarrow{f})$ +\end_inset + +, +\begin_inset Formula $f(P+\vec{v})=f(P)+\overrightarrow{f}(\vec{v})=f(P)$ +\end_inset + +, y por la inyectividad +\begin_inset Formula $P+\vec{v}=P$ +\end_inset + + y +\begin_inset Formula $\vec{v}=0$ +\end_inset + +, de modo que +\begin_inset Formula $\text{Nuc}(\overrightarrow{f})=\{0\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $f(P)=f(Q)$ +\end_inset + +, entonces +\begin_inset Formula $\overrightarrow{f}(\overrightarrow{PQ})=\overrightarrow{f(P)f(Q)}=\vec{0}$ +\end_inset + +, y por la inyectividad de +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + +, +\begin_inset Formula $\overrightarrow{PQ}=\vec{0}$ +\end_inset + + y +\begin_inset Formula $P=Q$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es suprayectiva si y sólo si lo es +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\vec{v}'\in V'$ +\end_inset + +, sea +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + arbitrario, +\begin_inset Formula $f(P)+\vec{v}'\in{\cal E}'$ +\end_inset + + y por la suprayectividad de +\begin_inset Formula $f$ +\end_inset + +, existe +\begin_inset Formula $Q\in{\cal E}$ +\end_inset + + con +\begin_inset Formula $f(Q)=f(P)+\vec{v}'$ +\end_inset + +, por lo que +\begin_inset Formula $\vec{v}'=\overrightarrow{f(P)f(Q)}=\overrightarrow{f}(\overrightarrow{PQ})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $Q'\in{\cal E}'$ +\end_inset + +, sea +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + arbitrario, +\begin_inset Formula $\overrightarrow{f(P)Q'}\in V'$ +\end_inset + +, y por la suprayectividad de +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + existe +\begin_inset Formula $\vec{v}\in V$ +\end_inset + + con +\begin_inset Formula $\overrightarrow{f}(\vec{v})=\overrightarrow{f(P)Q'}$ +\end_inset + +, luego +\begin_inset Formula $Q'=f(P)+\overrightarrow{f}(\vec{v})=f(P+\vec{v})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ +\end_inset + + es afín y biyectiva, entonces +\begin_inset Formula $f^{-1}$ +\end_inset + + es afín y +\begin_inset Formula $\overrightarrow{f^{-1}}=\overrightarrow{f}^{-1}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +f^{-1}(P'+\vec{v}')=f^{-1}(P')+\overrightarrow{f}^{-1}(\vec{v}')\iff f(f^{-1}(P'+\vec{v}'))=P'+\vec{v}'=f(f^{-1}(P')+\overrightarrow{f}^{-1}(\vec{v}')) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Esto último nos lleva al concepto de +\series bold +isomorfismo de espacios afines +\series default +, una aplicación afín y biyectiva +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}'$ +\end_inset + +. + Cuando existe se dice que +\begin_inset Formula ${\cal E}$ +\end_inset + + y +\begin_inset Formula ${\cal E}'$ +\end_inset + + son +\series bold +isomorfos +\series default +. + Como +\series bold +teorema +\series default +, dos espacios afines de dimensión finita sobre el mismo cuerpo son isomorfos + si y sólo si tienen la misma dimensión. + Más propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $M=\frac{A+B}{2}\implies f(M)=\frac{f(A)+f(B)}{2}$ +\end_inset + +. +\begin_inset Formula +\[ +\overrightarrow{AB}=2\overrightarrow{AM}\implies\overrightarrow{f(A)f(B)}=\overrightarrow{f}(\overrightarrow{AB})=\overrightarrow{f}(2\overrightarrow{AM})=2\overrightarrow{f(A)f(M)} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula ${\cal L}=P+W$ +\end_inset + + es una variedad de +\begin_inset Formula ${\cal E}$ +\end_inset + +, +\begin_inset Formula $f({\cal L})=f(P)+\overrightarrow{f}(W)$ +\end_inset + + lo es de +\begin_inset Formula ${\cal E}'$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +Q'\in f({\cal L})\iff\exists\vec{w}\in W:Q'=f(P+\vec{w})=f(P)+\overrightarrow{f}(\vec{w})\iff\\ +\iff\overrightarrow{f(P)Q'}=\overrightarrow{f}(\vec{w})\in\overrightarrow{f}(W)\iff Q'\in f(P)+\overrightarrow{f}(W) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}_{1}\ll{\cal L}_{2}\subseteq{\cal E}\implies f({\cal L}_{1})\ll f({\cal L}_{2})$ +\end_inset + +; +\begin_inset Formula ${\cal L}_{1}\parallel{\cal L}_{2}\subseteq{\cal E}\implies f({\cal L}_{1})\parallel f({\cal L}_{2})$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Se sigue de lo anterior y de que +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + conserva las inclusiones entre subespacios. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f$ +\end_inset + + biyectiva, si +\begin_inset Formula ${\cal L}'=P'+W$ +\end_inset + + es una variedad de +\begin_inset Formula ${\cal E}'$ +\end_inset + + y su inversa +\begin_inset Formula $f^{-1}({\cal L}')\neq\emptyset$ +\end_inset + +, esta es una variedad de +\begin_inset Formula ${\cal E}$ +\end_inset + +. + En concreto, +\begin_inset Formula $\text{dir}(f^{-1}({\cal L}'))=\overrightarrow{f}^{-1}(W')$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +Q\in f^{-1}({\cal L}')\iff f(Q)\in{\cal L}'\iff\overrightarrow{P'f(Q)}\in W'\iff\\ +\iff\overrightarrow{f(P)P'}+\overrightarrow{P'f(Q)}=\overrightarrow{f(P)f(Q)}=\overrightarrow{f}(\overrightarrow{PQ})\in W'\iff\\ +\iff\overrightarrow{PQ}\in\overrightarrow{f}^{-1}(W')\iff Q\in P+\overrightarrow{f}^{-1}(W') +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Puntos fijos +\end_layout + +\begin_layout Standard +\begin_inset Formula $Q\in{\cal E}$ +\end_inset + + es un +\series bold +punto fijo +\series default + de +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + + si +\begin_inset Formula $f(Q)=Q$ +\end_inset + +, y definimos +\begin_inset Formula +\[ +\text{Fix}(f):=\{Q\in{\cal E}:f(Q)=Q\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +subespacio invariante +\series default + por +\begin_inset Formula $\phi:V\rightarrow V$ +\end_inset + + es un subespacio +\begin_inset Formula $U$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq U$ +\end_inset + +. + Destacamos el subespacio de los +\series bold +vectores invariantes +\series default + o asociado al autovalor 1, +\begin_inset Formula +\[ +\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V:\phi(\vec{v})=\vec{v}\} +\] + +\end_inset + +y el de los +\series bold +opuestos +\series default + o asociado al autovalor +\begin_inset Formula $-1$ +\end_inset + +, +\begin_inset Formula +\[ +\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V:\phi(\vec{v})=-\vec{v}\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Se tiene que +\begin_inset Formula $P\in\text{Fix}(f)\neq\emptyset\implies\text{Fix}(f)=P+\text{Inv}(\overrightarrow{f})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $f(P)=P$ +\end_inset + +, +\begin_inset Formula +\[ +\begin{array}{c} +Q\in P+\text{Inv}(\overrightarrow{f})\iff\overrightarrow{PQ}\in\text{Inv}(\overrightarrow{f})\iff\overrightarrow{PQ}=\overrightarrow{f}(\overrightarrow{PQ})=\overrightarrow{f(P)f(Q)}=\overrightarrow{Pf(Q)}\iff\\ +\iff Q=f(Q)\iff Q\in\text{Fix}(f) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +En coordenadas, +\begin_inset Formula $\text{Inv}(\overrightarrow{f})$ +\end_inset + + se obtiene como las soluciones del sistema +\begin_inset Formula $(I-M|0)$ +\end_inset + +, mientras que +\begin_inset Formula $\text{Fix}(f)$ +\end_inset + + se obtiene como las soluciones del sistema +\begin_inset Formula $(I-M|X_{0})$ +\end_inset + +. + Por tanto, +\begin_inset Formula $\text{Inv}(\overrightarrow{f})=0\iff|\text{Fix}(f)|=1$ +\end_inset + +. +\end_layout + +\begin_layout Section +Ejemplos de transformaciones afines +\end_layout + +\begin_layout Subsection +Traslaciones +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $\vec{v}\in V$ +\end_inset + +, la +\series bold +traslación +\series default + de vector +\begin_inset Formula $\vec{v}$ +\end_inset + + es la aplicación +\begin_inset Formula $t_{\vec{v}}:{\cal E}\rightarrow{\cal E}$ +\end_inset + + con +\begin_inset Formula $t_{\vec{v}}(P)=P+\vec{v}$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $t_{\vec{v}}$ +\end_inset + + es afín y +\begin_inset Formula $\overrightarrow{t_{\vec{v}}}=id_{V}$ +\end_inset + +. +\begin_inset Formula +\[ +t_{\vec{v}}(P+\vec{w})=P+\vec{w}+\vec{v}=t_{\vec{v}}(P)+id_{V}(\vec{w}) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Recíprocamente, si +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + + es afín con +\begin_inset Formula $\overrightarrow{f}=id_{V}$ +\end_inset + + entonces +\begin_inset Formula $f=t_{\overrightarrow{Pf(P)}}$ +\end_inset + +, dado +\begin_inset Formula $P\in{\cal E}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + arbitrario y +\begin_inset Formula $\vec{v}:=\overrightarrow{Pf(P)}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $t_{\vec{v}}$ +\end_inset + + son aplicaciones afines con la misma lineal asociada y actúan igual sobre + +\begin_inset Formula $P$ +\end_inset + +, luego +\begin_inset Formula $f=t_{\vec{v}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $t_{\vec{0}}=id_{{\cal E}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\vec{v}\neq\vec{0}\implies\text{Fix}(t_{\vec{v}})=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $t_{\vec{v}}\circ t_{\vec{w}}=t_{\vec{w}}\circ t_{\vec{v}}=t_{\vec{v}+\vec{w}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $t_{\vec{v}}^{-1}=t_{-\vec{v}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La expresión matricial de +\begin_inset Formula $t_{\vec{v}}$ +\end_inset + + sobre +\begin_inset Formula $\Re=(O,{\cal B})$ +\end_inset + + es +\begin_inset Formula $X'=[\vec{v}]_{{\cal B}}+X$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + + afín, +\begin_inset Formula $f\circ t_{\vec{v}}=t_{\vec{v}}\circ f\iff\vec{v}\in\text{Inv}(\overrightarrow{f})$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como ambas tienen la misma lineal asociada ( +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + +), serán iguales si y sólo si actúan igual sobre un +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + arbitrario. +\begin_inset Formula +\[ +f\circ t_{\vec{v}}=t_{\vec{v}}\circ f\iff f(t_{\vec{v}}(P))=t_{\vec{v}}(f(P))\iff f(P+\vec{v})=f(P)+\vec{v}\iff\overrightarrow{f}(\vec{v})=\vec{v} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + y +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + +, +\begin_inset Formula $f=t_{\vec{v}}\circ g$ +\end_inset + + donde +\begin_inset Formula $\vec{v}=\overrightarrow{Pf(P)}$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es una transformación afín con +\begin_inset Formula $g(P)=P$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{g}=\overrightarrow{f}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $g:=t_{-\vec{v}}\circ f$ +\end_inset + + es afín con +\begin_inset Formula $g(P)=t_{-\vec{v}}(f(P))=f(P)-\vec{v}=f(P)+\overrightarrow{f(P)P}=P$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{g}=\overrightarrow{t_{-\vec{v}}}\circ\overrightarrow{f}=\overrightarrow{f}$ +\end_inset + +, y componiendo se obtiene +\begin_inset Formula $f=t_{\vec{v}}\circ g$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Homotecias +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $O\in{\cal E},\lambda\in K$ +\end_inset + +, la +\series bold +homotecia +\series default + de centro +\begin_inset Formula $O$ +\end_inset + + y razón +\begin_inset Formula $\lambda$ +\end_inset + + es la aplicación +\begin_inset Formula $H_{O,\lambda}:{\cal E}\rightarrow{\cal E}$ +\end_inset + + dada por +\begin_inset Formula $H_{O,\lambda}(P):=O+\lambda\overrightarrow{OP}$ +\end_inset + +. + Así, para +\begin_inset Formula $P\neq O$ +\end_inset + +, la razón simple +\begin_inset Formula $(O,P,H_{O,\lambda}(P))=\lambda$ +\end_inset + +. + Para +\begin_inset Formula $\lambda=0$ +\end_inset + + se obtiene la aplicación constante, que lleva todos los puntos a +\begin_inset Formula $O$ +\end_inset + +; para +\begin_inset Formula $\lambda=1$ +\end_inset + + se obtiene la identidad, y para +\begin_inset Formula $\lambda=-1$ +\end_inset + + se obtiene la +\series bold +simetría central +\series default + sobre +\begin_inset Formula $O$ +\end_inset + +, escrita +\begin_inset Formula $s_{O}:=H_{O,-1}$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H_{O,\lambda}$ +\end_inset + + es afín con +\begin_inset Formula $\overrightarrow{H_{O,\lambda}}=h_{\lambda}$ +\end_inset + +. +\begin_inset Formula +\[ +H_{O,\lambda}(P+\vec{w})=O+\lambda\overrightarrow{O(P+\vec{w})}=O+\lambda(\overrightarrow{OP}+\overrightarrow{w})=(O+\lambda\overrightarrow{OP})+\lambda\vec{w}=H_{O,\lambda}(P)+h_{\lambda}(\vec{w}) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lambda\neq1\implies\text{Fix}(H_{O,\lambda})=\{O\}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +P=H_{O,\lambda}(P)=O+\lambda\overrightarrow{OP}\iff\overrightarrow{OP}=\lambda\overrightarrow{OP}\iff\\ +\iff(\lambda-1)\overrightarrow{OP}=\vec{0}\overset{\lambda\neq1}{\iff}\overrightarrow{OP}=\vec{0}\iff P=O +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + + es afín con +\begin_inset Formula $\overrightarrow{f}=h_{\lambda}$ +\end_inset + + y +\begin_inset Formula $\lambda\neq1$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es la homotecia +\begin_inset Formula $f=H_{O,\lambda}$ +\end_inset + + con +\begin_inset Formula $O=P+\frac{1}{1-\lambda}\overrightarrow{Pf(P)}$ +\end_inset + +. + Así, para una simetría central, +\begin_inset Formula $O=\frac{P+f(P)}{2}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como +\begin_inset Formula $\overrightarrow{f}=\overrightarrow{H_{O,\lambda}}$ +\end_inset + +, será +\begin_inset Formula $f=H_{O,\lambda}$ +\end_inset + + si actúan igual sobre un punto. + Por la definición de +\begin_inset Formula $O$ +\end_inset + + se tiene que +\begin_inset Formula $\overrightarrow{PO}=\frac{1}{1-\lambda}\overrightarrow{Pf(P)}$ +\end_inset + + y por tanto +\begin_inset Formula $(1-\lambda)\overrightarrow{PO}=\overrightarrow{Pf(P)}$ +\end_inset + +, luego +\begin_inset Formula +\[ +\overrightarrow{Of(O)}=\overrightarrow{OP}+\overrightarrow{Pf(P)}+\overrightarrow{f(P)f(O)}=-\overrightarrow{PO}+(1-\lambda)\overrightarrow{PO}+\lambda\overrightarrow{PO}=\vec{0} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H_{O,\lambda}\circ H_{O,\mu}=H_{O,\mu}\circ H_{O,\lambda}=H_{O,\lambda\mu}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lambda\neq0\implies H_{O,\lambda}^{-1}=H_{O,\lambda^{-1}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La expresión matricial de +\begin_inset Formula $H_{O,\lambda}$ +\end_inset + + en el referencial +\begin_inset Formula $\Re$ +\end_inset + + es +\begin_inset Formula $X'=(1-\lambda)[O]_{\Re}+\lambda X$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda\neq1$ +\end_inset + + entonces +\begin_inset Formula $t_{\vec{v}}\circ H_{O,\lambda}$ +\end_inset + + y +\begin_inset Formula $H_{O,\lambda}\circ t_{\vec{v}}$ +\end_inset + + son homotecias de razón +\begin_inset Formula $\lambda$ +\end_inset + + y centros respectivos +\begin_inset Formula $O+\frac{1}{1-\lambda}\vec{v}$ +\end_inset + + y +\begin_inset Formula $O+\frac{\lambda}{1-\lambda}\vec{v}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $O\neq O'$ +\end_inset + + y +\begin_inset Formula $\lambda\lambda'=1$ +\end_inset + + entonces +\begin_inset Formula $H_{O,\lambda}\circ H_{O',\lambda'}=t_{(1-\lambda)\overrightarrow{O'O}}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Proyecciones y simetrías vectoriales +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $V=W_{1}\oplus W_{2}$ +\end_inset + +, la +\series bold +proyección vectorial +\series default + +\begin_inset Formula $\pi$ +\end_inset + + y la +\series bold +simetría vectorial +\series default + +\begin_inset Formula $\sigma$ +\end_inset + + de +\series bold +base +\series default + +\begin_inset Formula $W_{1}$ +\end_inset + + y +\series bold +dirección +\series default + +\begin_inset Formula $W_{2}$ +\end_inset + +, o sobre +\begin_inset Formula $W_{1}$ +\end_inset + + y paralelamente a +\begin_inset Formula $W_{2}$ +\end_inset + + son los endomorfismos de +\begin_inset Formula $V$ +\end_inset + + tales que, si +\begin_inset Formula $\vec{v}$ +\end_inset + + se descompone como +\begin_inset Formula $\vec{v}=\vec{w}_{1}+\vec{w}_{2}$ +\end_inset + + con +\begin_inset Formula $\vec{w}_{1}\in W_{1}$ +\end_inset + + y +\begin_inset Formula $\vec{w}_{2}\in W_{2}$ +\end_inset + +, entonces +\begin_inset Formula $\pi_{W_{1},W_{2}}(\vec{v})=\vec{w}_{1}$ +\end_inset + + y +\begin_inset Formula $\sigma_{W_{1},W_{2}}(\vec{v})=\vec{w}_{1}-\vec{w}_{2}$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma+id_{V}=2\pi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\pi$ +\end_inset + + es +\series bold +idempotente +\series default + ( +\begin_inset Formula $\pi^{2}=\pi$ +\end_inset + +) y +\begin_inset Formula $\sigma$ +\end_inset + + es +\series bold +involutiva +\series default + ( +\begin_inset Formula $\sigma^{2}=id_{V}$ +\end_inset + +, es decir, +\begin_inset Formula $\sigma^{-1}=\sigma$ +\end_inset + +). +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $W_{1}=\text{Inv}(\pi)$ +\end_inset + + y +\begin_inset Formula $W_{2}=\text{Nuc}(\pi)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $W_{1}=\text{Inv}(\sigma)$ +\end_inset + + y +\begin_inset Formula $W_{2}=\text{Opp}(\sigma)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\phi\text{ es proyección (con }W_{1}=\text{Inv}(\phi)\text{ y }W_{2}=\text{Nuc}(\phi)\text{)}\iff\phi\text{ es \textbf{idempotente} (}\phi^{2}=\phi\text{)}\iff V=\text{Inv}(\phi)\oplus\text{Nuc}(\phi)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[2\implies3]$ +\end_inset + + +\begin_inset Formula $\vec{v}=\phi(\vec{v})+(\vec{v}-\phi(\vec{v}))\in\text{Inv}(\phi)+\text{Nuc}(\phi)$ +\end_inset + + para todo +\begin_inset Formula $\vec{v}\in V$ +\end_inset + +, y +\begin_inset Formula $\vec{v}\in\text{Inv}(\phi)\cap\text{Nuc}(\phi)\implies\vec{v}\overset{\text{Inv}}{=}\phi(\vec{v})\overset{\text{Nuc}}{=}\vec{0}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[3\implies1]$ +\end_inset + + Si +\begin_inset Formula $\vec{v}=\vec{w}_{1}+\vec{w}_{2}$ +\end_inset + + con +\begin_inset Formula $\vec{w}_{1}\in\text{Inv}(\phi)$ +\end_inset + + y +\begin_inset Formula $\vec{w}_{2}\in\text{Nuc}(\phi)$ +\end_inset + +, entonces +\begin_inset Formula $\phi(\vec{v})=\phi(\vec{w}_{1})+\phi(\vec{w}_{2})=\vec{w}_{1}+\vec{0}=\vec{w}_{1}$ +\end_inset + +, luego +\begin_inset Formula $\phi$ +\end_inset + + es la proyección de base +\begin_inset Formula $\text{Inv}(\phi)$ +\end_inset + + y dirección +\begin_inset Formula $\text{Nuc}(\phi)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\phi\text{ es simetría (con }W_{1}=\text{Inv}(\phi)\text{ y }W_{2}=\text{Nuc}(\phi)\text{)}\iff\text{\phi}\text{ es \textbf{involutiva} (}\phi^{2}=id_{V}\text{)}\iff V=\text{Inv}(\phi)\oplus\text{Opp}(\phi)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Demostración análoga, tomando +\begin_inset Formula $\vec{v}=\frac{1}{2}(\vec{v}+\phi(\vec{v}))+\frac{1}{2}(\vec{v}-\phi(\vec{v}))$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\{\vec{w}_{1},\dots,\vec{w}_{n}\}$ +\end_inset + + es base de +\begin_inset Formula $W_{1}$ +\end_inset + + y +\begin_inset Formula $\{\vec{u}_{1},\dots,\vec{u}_{m}\}$ +\end_inset + + es de +\begin_inset Formula $W_{2}$ +\end_inset + +, podemos definir la base +\begin_inset Formula ${\cal B}:=\{\vec{w}_{1},\dots,\vec{w}_{n},\vec{u}_{1},\dots,\vec{u}_{m}\}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + y entonces +\begin_inset Formula $M_{{\cal B}}(\pi_{W_{1},W_{2}})=\left(\begin{array}{c|c} +I_{n} & 0\\ +\hline 0 & 0 +\end{array}\right)$ +\end_inset + + y +\begin_inset Formula $M_{{\cal B}}(\sigma_{W_{1},W_{2}})=\left(\begin{array}{c|c} +I_{n} & 0\\ +\hline 0 & -I_{m} +\end{array}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Proyecciones y simetrías afines +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula ${\cal L}=A+W_{1}$ +\end_inset + + y +\begin_inset Formula $V=W_{1}\oplus W_{2}$ +\end_inset + +, la +\series bold +proyección afín +\series default + +\begin_inset Formula $p$ +\end_inset + + y la +\series bold +simetría afín +\series default + +\begin_inset Formula $s$ +\end_inset + + sobre +\begin_inset Formula ${\cal L}$ +\end_inset + + paralelamente a +\begin_inset Formula $W_{2}$ +\end_inset + + son las aplicaciones +\begin_inset Formula $p_{{\cal L},W_{2}},s_{{\cal L},W_{2}}:{\cal E}\rightarrow{\cal E}$ +\end_inset + + tales que +\begin_inset Formula $p(Q)\in{\cal L}\cap(Q+W_{2})$ +\end_inset + + (conjunto unitario porque las variedades son complementarias) y +\begin_inset Formula $s(Q)=p(Q)+\overrightarrow{Qp(Q)}=Q+2\overrightarrow{Qp(Q)}$ +\end_inset + +. + Visto de otro modo, si +\begin_inset Formula $Q=A+\vec{w}_{1}+\vec{w}_{2}$ +\end_inset + + con +\begin_inset Formula $\vec{w}_{1}\in W_{1}$ +\end_inset + + y +\begin_inset Formula $\vec{w}_{2}\in W_{2}$ +\end_inset + +, entonces +\begin_inset Formula $p(Q)=A+\vec{w}_{1}$ +\end_inset + + y +\begin_inset Formula $s(Q)=A+\vec{w}_{1}-\vec{w}_{2}$ +\end_inset + +. + Si +\begin_inset Formula ${\cal L}=\{O\}$ +\end_inset + + entonces +\begin_inset Formula $p$ +\end_inset + + es la aplicación constante en +\begin_inset Formula $O$ +\end_inset + + y +\begin_inset Formula $s$ +\end_inset + + es la simetría central de centro +\begin_inset Formula $O$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $p_{{\cal L},W_{2}}$ +\end_inset + + y +\begin_inset Formula $s_{{\cal L},W_{2}}$ +\end_inset + + son afines con +\begin_inset Formula $\overrightarrow{p_{{\cal L},W_{2}}}=\pi_{W_{1},W_{2}}$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{s_{{\cal L},W_{2}}}=\sigma_{W_{1},W_{2}}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $\overrightarrow{AQ}=\vec{w}_{1}+\vec{w}_{2}$ +\end_inset + + y +\begin_inset Formula $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$ +\end_inset + + con +\begin_inset Formula $\vec{u}_{1},\vec{w}_{1}\in W_{1},\vec{u}_{2},\vec{w}_{2}\in W_{2}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +p(Q+\vec{u})=p(A+(\vec{w}_{1}+\vec{u}_{1})+(\vec{w}_{2}+\vec{u}_{2}))=A+(\vec{w}_{1}+\vec{u}_{1})=(A+\vec{w}_{1})+\vec{u}_{1}=p(A)+\pi(\vec{u}) +\] + +\end_inset + +La simetría se hace de forma análoga. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}=\text{Fix}(p)$ +\end_inset + + y +\begin_inset Formula $W_{2}=\text{Nuc}(\pi)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $\vec{w}_{1}\in W_{1},\vec{w}_{2}\in W_{2}$ +\end_inset + +, +\begin_inset Formula +\[ +Q:=A+\vec{w}_{1}+\vec{w}_{2}\in\text{Fix}(p)\iff\vec{w}_{2}=0\iff Q=A+\vec{w}_{1}\iff Q\in{\cal L} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}=\text{Fix}(s)$ +\end_inset + + y +\begin_inset Formula $W_{2}=\text{Opp}(\sigma)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada una transformación afín +\begin_inset Formula $f:{\cal E}\rightarrow{\cal E}$ +\end_inset + +, +\begin_inset Formula $f\text{ es una proyección afín (con }{\cal L}=\text{Fix}(f)\text{ y }W_{2}=\text{Nuc}(\overrightarrow{f})\text{)}\iff f\text{ es idempotente}\iff\overrightarrow{f}^{2}=\overrightarrow{f}\land\text{Fix}(f)\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[1\implies2]$ +\end_inset + + +\begin_inset Formula $f^{2}$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + actúan igual sobre los puntos de +\begin_inset Formula $\text{Fix}(f)\neq\emptyset$ +\end_inset + +, pues ambas los fijan, y +\begin_inset Formula $\overrightarrow{f^{2}}=\overrightarrow{f}^{2}=\overrightarrow{f}$ +\end_inset + +, luego +\begin_inset Formula $f^{2}=f$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[2\implies3]$ +\end_inset + + +\begin_inset Formula $\overrightarrow{f}^{2}=\overrightarrow{f^{2}}\overset{f^{2}=f}{=}\overrightarrow{f}$ +\end_inset + +, luego +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + es proyección vectorial. + Por otro lado, dado +\begin_inset Formula $P\in{\cal E}$ +\end_inset + +, +\begin_inset Formula $f(P)=f(f(P))\in\text{Fix}(f)\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[3\implies1]$ +\end_inset + + Sea +\begin_inset Formula $A\in\text{Fix}(f)$ +\end_inset + +, entonces +\begin_inset Formula $\text{Fix}(f)=A+\text{Inv}(\overrightarrow{f})$ +\end_inset + +, pero +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + es la proyección de base +\begin_inset Formula $\text{Inv}(\overrightarrow{f})$ +\end_inset + + y dirección +\begin_inset Formula $\text{Nuc}(\overrightarrow{f})$ +\end_inset + +. + Ahora bien, dados +\begin_inset Formula $\vec{w}_{1}\in\text{Inv}(\overrightarrow{f}),\vec{w}_{2}\in\text{Nuc}(\overrightarrow{f})$ +\end_inset + +, +\begin_inset Formula $f(A+\vec{w}_{1}+\vec{w}_{2})=f(A)+\overrightarrow{f}(\vec{w}_{1}+\vec{w}_{2})=A+\vec{w}_{1}$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es la proyección de base +\begin_inset Formula $A+\text{Inv}(\overrightarrow{f})=\text{Fix}(f)$ +\end_inset + + y dirección +\begin_inset Formula $\text{Nuc}(\overrightarrow{f})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada una transformación afín +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $f\text{ es una simetría afín (con }{\cal L}=\text{Fix}(f)\text{ y }W_{2}=\text{Opp}(\overrightarrow{f})\text{)}\iff f\text{ es involutiva}\iff\overrightarrow{f}^{2}=id_{V}\land\text{Fix}(f)\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[1\implies2]$ +\end_inset + + +\begin_inset Formula $f^{2}$ +\end_inset + + e +\begin_inset Formula $id_{{\cal E}}$ +\end_inset + + actúan igual sobre los puntos de +\begin_inset Formula $\text{Fix}(f)$ +\end_inset + +, pues ambos los fijan, y +\begin_inset Formula $\overrightarrow{f^{2}}=\overrightarrow{f}^{2}=id_{V}$ +\end_inset + +, luego +\begin_inset Formula $f^{2}=f$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[2\implies3]$ +\end_inset + + +\begin_inset Formula $\overrightarrow{f}^{2}=\overrightarrow{f^{2}}=\overrightarrow{id_{{\cal E}}}=id_{V}$ +\end_inset + +. + Por otro lado, dado +\begin_inset Formula $P\in{\cal E}$ +\end_inset + + y sea +\begin_inset Formula $A:=\frac{P+f(P)}{2}$ +\end_inset + + entonces +\begin_inset Formula $f(A)=\frac{f(P)+f(f(P))}{2}=\frac{f(P)+P}{2}=A\in\text{Fix}(f)\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $[3\implies1]$ +\end_inset + + Sea +\begin_inset Formula $A\in\text{Fix}(f)$ +\end_inset + +, entonces +\begin_inset Formula $\text{Fix}(f)=A+\text{Inv}(\overrightarrow{f})$ +\end_inset + +, pero +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + es la simetría de base +\begin_inset Formula $\text{Inv}(\overrightarrow{f})$ +\end_inset + + y dirección +\begin_inset Formula $\text{Opp}(\overrightarrow{f})$ +\end_inset + +. + Ahora bien, dados +\begin_inset Formula $\vec{w}_{1}\in\text{Inv}(\overrightarrow{f}),\vec{w}_{2}\in\text{Opp}(\overrightarrow{f})$ +\end_inset + +, +\begin_inset Formula $f(A+\vec{w}_{1}+\vec{w}_{2})=f(A)+\overrightarrow{f}(\vec{w}_{1}+\vec{w}_{2})=A+\vec{w}_{1}-\vec{w}_{2}$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es la simetría de base +\begin_inset Formula $A+\text{Inv}(\overrightarrow{f})=\text{Fix}(f)$ +\end_inset + + y dirección +\begin_inset Formula $\text{Opp}(\overrightarrow{f})$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
