diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /gae/n5.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'gae/n5.lyx')
| -rw-r--r-- | gae/n5.lyx | 887 |
1 files changed, 887 insertions, 0 deletions
diff --git a/gae/n5.lyx b/gae/n5.lyx new file mode 100644 index 0000000..8332603 --- /dev/null +++ b/gae/n5.lyx @@ -0,0 +1,887 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +isometría +\series default + o +\series bold +movimiento +\series default + de +\begin_inset Formula $E$ +\end_inset + + es una aplicación +\begin_inset Formula $f:E\rightarrow E$ +\end_inset + + con +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $d(P,Q)=d(f(P),f(Q))$ +\end_inset + + (también se puede hablar de isometrías entre espacios distintos). + El conjunto que forman es el +\series bold +grupo de los movimientos +\series default + de +\begin_inset Formula $E$ +\end_inset + +, escrito +\begin_inset Formula $\text{Is}(E)$ +\end_inset + +. + Una aplicación +\begin_inset Formula $f:E\rightarrow E$ +\end_inset + + es un movimiento si y sólo si es afín y +\begin_inset Formula $\overrightarrow{f}:V\rightarrow V$ +\end_inset + + es ortogonal. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Fijado +\begin_inset Formula $A\in E$ +\end_inset + +, demostramos que si +\begin_inset Formula $\ell:V\rightarrow V$ +\end_inset + + dada por +\begin_inset Formula $\ell(\vec{v}):=\overrightarrow{f(A)f(A+\vec{v})}$ +\end_inset + + es lineal, entonces +\begin_inset Formula $f$ +\end_inset + + es afín con +\begin_inset Formula $\overrightarrow{f}=\ell$ +\end_inset + +. + En efecto, para +\begin_inset Formula $P\in E$ +\end_inset + + arbitrario, +\begin_inset Formula $\ell(\overrightarrow{AP})=\overrightarrow{f(A)f(A+\overrightarrow{AP})}=\overrightarrow{f(A)f(P)}$ +\end_inset + +, y dados +\begin_inset Formula $P,Q\in E$ +\end_inset + +, +\begin_inset Formula $\ell(\overrightarrow{PQ})=\ell(-\overrightarrow{AP}+\overrightarrow{AQ})=-\ell(\overrightarrow{AP})+\ell(\overrightarrow{AQ})=-\overrightarrow{f(A)f(P)}+\overrightarrow{f(A)f(Q)}=\overrightarrow{f(P)f(Q)}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +A continuación veamos que +\begin_inset Formula $\ell$ +\end_inset + + es ortogonal, y por tanto será lineal y +\begin_inset Formula $f$ +\end_inset + + será afín con +\begin_inset Formula $\overrightarrow{f}=\ell$ +\end_inset + +. + Dados +\begin_inset Formula $\vec{v},\vec{w}\in V$ +\end_inset + +, si +\begin_inset Formula $P:=A+\vec{v}$ +\end_inset + + y +\begin_inset Formula $Q:=A+\vec{w}$ +\end_inset + +, deducimos +\begin_inset Formula $\vec{v}\cdot\vec{w}=\frac{1}{2}\left(\Vert\vec{v}\Vert^{2}+\Vert\vec{w}\Vert^{2}-\Vert\vec{w}-\vec{v}\Vert^{2}\right)$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $=\frac{1}{2}\left(\Vert\overrightarrow{AP}\Vert^{2}+\Vert\overrightarrow{AQ}\Vert^{2}-\Vert\overrightarrow{PQ}\Vert^{2}\right)=\frac{1}{2}\left(d(A,P)^{2}+d(A,Q)^{2}-d(P,Q)^{2}\right)$ +\end_inset + +. + Pero del mismo modo, +\begin_inset Formula $\ell(\vec{v})\cdot\ell(\vec{w})=\frac{1}{2}\left(d(\ell(A),\ell(P))^{2}+d(\ell(A),\ell(Q))^{2}-d(\ell(P),\ell(Q))^{2}\right)$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + conserva distancias, entonces +\begin_inset Formula $\ell(\vec{v})\cdot\ell(\vec{w})=\vec{v}\cdot\vec{w}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $d(P,Q)=\Vert\overrightarrow{PQ}\Vert=\Vert\overrightarrow{f}(\overrightarrow{PQ})\Vert=\Vert\overrightarrow{f(P)f(Q)}\Vert=d(f(P),f(Q))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: Si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son isometrías: +\end_layout + +\begin_layout Itemize +\begin_inset Formula ${\cal L}_{1}\bot{\cal L}_{2}\implies f({\cal L}_{1})\bot f({\cal L}_{2})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $f\circ g$ +\end_inset + + es una isometría. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $f$ +\end_inset + + es biyectiva, +\begin_inset Formula $f^{-1}$ +\end_inset + + es una isometría. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $f$ +\end_inset + + es inyectiva. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\dim(E)<\infty$ +\end_inset + +, +\begin_inset Formula $\text{Is}(E)$ +\end_inset + + es un grupo con la composición de aplicaciones. +\end_layout + +\begin_layout Standard +Un movimiento +\begin_inset Formula $f$ +\end_inset + + es +\series bold +positivo/directo +\series default + o +\series bold +negativo/inverso +\series default + según lo sea +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + +. + Llamamos +\begin_inset Formula $\text{Is}^{+}(E)$ +\end_inset + + al conjunto de todos los movimientos positivos de +\begin_inset Formula $E$ +\end_inset + +, e +\begin_inset Formula $\text{Is}^{-}(E)$ +\end_inset + + al de todos los negativos. +\end_layout + +\begin_layout Section +Movimientos en +\begin_inset Formula $E_{1}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\overrightarrow{f}=id$ +\end_inset + + entonces +\begin_inset Formula $f=t_{\vec{v}}$ +\end_inset + + con +\begin_inset Formula $\vec{v}=\overrightarrow{Qf(Q)}$ +\end_inset + + para +\begin_inset Formula $Q\in E$ +\end_inset + + arbitrario. + Si +\begin_inset Formula $\overrightarrow{f}=-id$ +\end_inset + + entonces +\begin_inset Formula $f=s_{P}$ +\end_inset + + con +\begin_inset Formula $P=\frac{Q+f(Q)}{2}$ +\end_inset + + para +\begin_inset Formula $Q\in E$ +\end_inset + + arbitrario. +\end_layout + +\begin_layout Section +Movimientos en +\begin_inset Formula $E_{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Además de los dos casos posibles en +\begin_inset Formula $E_{1}$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\overrightarrow{f}$ +\end_inset + + es una simetría ortogonal, si hay puntos fijos entonces +\begin_inset Formula $f$ +\end_inset + + es la +\series bold +simetría ortogonal (afín) +\series default + de base +\begin_inset Formula $\text{Fix}(f)$ +\end_inset + + (y con dirección +\begin_inset Formula $\text{dir}(\text{Fix}(f))^{\bot}$ +\end_inset + +), y de lo contrario es la +\series bold +simetría ortogonal con deslizamiento +\series default + de base +\begin_inset Formula ${\cal L}=A+\text{Inv}(\overrightarrow{f})$ +\end_inset + + y con vector de deslizamiento +\begin_inset Formula $\vec{v}=\overrightarrow{Af(A)}$ +\end_inset + +, siendo +\begin_inset Formula $A:=\frac{Q+f(Q)}{2}$ +\end_inset + + para +\begin_inset Formula $Q\in E$ +\end_inset + + arbitrario, de modo que +\begin_inset Formula $f=s_{{\cal L}}\circ t_{\vec{v}}=t_{\vec{v}}\circ s_{{\cal L}}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +En efecto, dado +\begin_inset Formula $Q\in E$ +\end_inset + +, si +\begin_inset Formula $\overrightarrow{Qf(Q)}=\vec{v}+\vec{w}$ +\end_inset + + con +\begin_inset Formula $\vec{v}\in W=\text{Inv}(\overrightarrow{f})$ +\end_inset + + y +\begin_inset Formula $\vec{w}\in W^{\bot}$ +\end_inset + + y llamamos +\begin_inset Formula $A:=\frac{Q+f(Q)}{2}=Q+\frac{1}{2}(\vec{v}+\vec{w})$ +\end_inset + +, como +\begin_inset Formula $\overrightarrow{f}=\sigma_{W}$ +\end_inset + + es la simetría de base +\begin_inset Formula $W$ +\end_inset + + y dirección +\begin_inset Formula $W^{\bot}$ +\end_inset + +, se tiene +\begin_inset Formula $\overrightarrow{f}(\overrightarrow{QA})=\overrightarrow{f}(\frac{1}{2}(\vec{v}+\vec{w}))=\frac{1}{2}\vec{v}-\frac{1}{2}\vec{w}$ +\end_inset + +, con lo que si +\begin_inset Formula $g=t_{-\vec{v}}\circ f$ +\end_inset + + se tiene +\begin_inset Formula $g(A)=(t_{-\vec{v}}\circ f)(A)=f(A)-\vec{v}=f(Q)+\overrightarrow{f}(\overrightarrow{QA})-\vec{v}=f(Q)-\frac{1}{2}\vec{v}-\frac{1}{2}\vec{w}-\vec{v}=f(Q)-\frac{1}{2}(\vec{v}+\vec{w})=A$ +\end_inset + +. + Por tanto +\begin_inset Formula $\text{Fix}(g)\neq\emptyset$ +\end_inset + + y como +\begin_inset Formula $\overrightarrow{g}=\overrightarrow{f}$ +\end_inset + +, resulta +\begin_inset Formula $g=s_{A+\text{Inv}(\overrightarrow{g})}=s_{{\cal L}}$ +\end_inset + + y +\begin_inset Formula $f=t_{\vec{v}}\circ g$ +\end_inset + +, y es fácil comprobar que +\begin_inset Formula $t_{\vec{v}}\circ g=g\circ t_{\vec{v}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\overrightarrow{f}=g_{\theta}$ +\end_inset + + es la rotación de ángulo +\begin_inset Formula $\theta\neq0$ +\end_inset + + entonces +\begin_inset Formula $f=\rho_{P,\theta}$ +\end_inset + + es la +\series bold +rotación +\series default + de centro +\begin_inset Formula $P$ +\end_inset + + y ángulo +\begin_inset Formula $\theta$ +\end_inset + +, siendo +\begin_inset Formula $P$ +\end_inset + + el único punto fijo de +\begin_inset Formula $f$ +\end_inset + +, pues +\begin_inset Formula $\text{Inv}(\overrightarrow{f})=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Movimientos en +\begin_inset Formula $E_{3}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Lo dicho respecto a las traslaciones y simetrías también se aplica aquí, + pero también se pueden dar otros dos casos. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $\overrightarrow{f}=\rho_{F,\theta}$ +\end_inset + + es la rotación de eje +\begin_inset Formula $F$ +\end_inset + + y ángulo +\begin_inset Formula $\theta$ +\end_inset + +, si hay puntos fijos entonces +\begin_inset Formula $f=\rho_{\ell,\theta}$ +\end_inset + + es la +\series bold +rotación +\series default + de eje +\begin_inset Formula $\ell=\text{Fix}(f)$ +\end_inset + + y ángulo +\begin_inset Formula $\theta$ +\end_inset + +, y de lo contrario +\begin_inset Formula $f=t_{\vec{v}}\circ\rho_{\ell,\theta}=\rho_{\ell,\theta}\circ t_{\vec{v}}$ +\end_inset + + es la +\series bold +rotación con deslizamiento +\series default + o +\series bold +movimiento helicoidal +\series default + de eje +\begin_inset Formula $\ell$ +\end_inset + +, ángulo +\begin_inset Formula $\theta$ +\end_inset + + y vector de deslizamiento +\begin_inset Formula $\vec{v}$ +\end_inset + +, donde +\begin_inset Formula $\vec{v}=\pi_{F}(\overrightarrow{Qf(Q)})$ +\end_inset + + para +\begin_inset Formula $Q\in E_{3}$ +\end_inset + + arbitrario y +\begin_inset Formula $\ell=\text{Fix}(t_{-\vec{v}}\circ f)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Todo movimiento +\begin_inset Formula $f:E_{3}\rightarrow E_{3}$ +\end_inset + + con +\begin_inset Formula $\overrightarrow{f}=\rho_{F,\theta}$ +\end_inset + + para +\begin_inset Formula $\theta\neq0$ +\end_inset + + y +\begin_inset Formula $\text{Fix}(f)=\emptyset$ +\end_inset + + es un movimiento helicoidal con los elementos mencionados, y viceversa. +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $Q\in E_{3}$ +\end_inset + + arbitrario y +\begin_inset Formula $\overrightarrow{Qf(Q)}=\vec{v}+\vec{w}$ +\end_inset + + con +\begin_inset Formula $\vec{v}\in F$ +\end_inset + + y +\begin_inset Formula $\vec{w}\in F^{\bot}$ +\end_inset + +, con lo que +\begin_inset Formula $\vec{v}$ +\end_inset + + es la proyección ortogonal de +\begin_inset Formula $\overrightarrow{Qf(Q)}$ +\end_inset + + sobre +\begin_inset Formula $F$ +\end_inset + +. + Sean ahora +\begin_inset Formula $g:=t_{-\vec{v}}\circ f$ +\end_inset + + y +\begin_inset Formula ${\cal H}:=Q+F^{\bot}$ +\end_inset + +. + Entonces +\begin_inset Formula $g({\cal H})\subseteq{\cal H}$ +\end_inset + +, pues +\begin_inset Formula $Q'\in{\cal H}\implies\exists\vec{x}\in F^{\bot}:Q'=Q+\vec{x}\implies g(Q')=g(Q+\vec{x})=f(Q+\vec{x})-\vec{v}=f(Q)-\vec{v}+\overrightarrow{f}(\vec{x})=Q+\vec{w}+\overrightarrow{f}(\vec{x})\in Q+F^{\bot}={\cal H}$ +\end_inset + +. + Entonces +\begin_inset Formula $g|_{{\cal H}}$ +\end_inset + + es un movimiento para el que +\begin_inset Formula $\overrightarrow{g}|_{F^{\bot}}=\overrightarrow{f}|_{F^{\bot}}$ +\end_inset + + es una rotación, luego existe +\begin_inset Formula $P\in{\cal H}$ +\end_inset + + con +\begin_inset Formula $g(P)=P$ +\end_inset + +. + Esto implica +\begin_inset Formula $\vec{v}\neq\vec{0}$ +\end_inset + +, pues de lo contrario sería +\begin_inset Formula $f=g$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + tendría puntos fijos. + Deducimos pues que +\begin_inset Formula $g$ +\end_inset + + es la rotación +\begin_inset Formula $\rho_{\ell,\theta}$ +\end_inset + + con +\begin_inset Formula $\ell=\text{Fix}(g)=\text{Fix}(t_{-\vec{v}}\circ f)$ +\end_inset + + y por tanto +\begin_inset Formula $f=t_{\vec{v}}\circ g$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $g:=\rho_{\ell,\theta}$ +\end_inset + +, para un +\begin_inset Formula $Q\in E_{3}$ +\end_inset + + arbitrario, +\begin_inset Formula $\overrightarrow{Qf(Q)}=\overrightarrow{Q(g(Q)+\vec{v})}=\vec{v}+\overrightarrow{Qg(Q)}$ +\end_inset + +, donde +\begin_inset Formula $\vec{v}\in F$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{Qg(Q)}\in F^{\bot}$ +\end_inset + +, luego +\begin_inset Formula $\vec{v}$ +\end_inset + + es la proyección ortogonal de +\begin_inset Formula $\overrightarrow{Qf(Q)}$ +\end_inset + + sobre +\begin_inset Formula $F$ +\end_inset + +. + Esto prueba que +\begin_inset Formula $\text{Fix}(f)=\emptyset$ +\end_inset + +, pues de lo contrario se tendría +\begin_inset Formula $\overrightarrow{Qf(Q)}=\vec{0}$ +\end_inset + + y entonces +\begin_inset Formula $\vec{v}=\vec{0}$ +\end_inset + + y +\begin_inset Formula $\overrightarrow{f}=\rho_{F,\theta}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Itemize +Si +\begin_inset Formula $\overrightarrow{f}=\rho_{F,\theta}\circ\sigma_{F^{\bot}}$ +\end_inset + + es una rotación con simetría, entonces +\begin_inset Formula $f=\rho_{\ell,\theta}\circ s_{{\cal H}}=s_{{\cal H}}\circ p_{\ell,\theta}$ +\end_inset + + es una +\series bold +rotación con simetría especular +\series default + de base +\begin_inset Formula ${\cal H}$ +\end_inset + + y ángulo +\begin_inset Formula $\theta$ +\end_inset + +, donde +\begin_inset Formula $\ell=P+F$ +\end_inset + + y +\begin_inset Formula ${\cal H}=P+F^{\bot}$ +\end_inset + + siendo +\begin_inset Formula $P$ +\end_inset + + el único punto fijo de +\begin_inset Formula $f$ +\end_inset + + (pues +\begin_inset Formula $\text{Inv}(\overrightarrow{f})=0$ +\end_inset + +). +\end_layout + +\end_body +\end_document |
