aboutsummaryrefslogtreecommitdiff
path: root/gcs/n1.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /gcs/n1.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'gcs/n1.lyx')
-rw-r--r--gcs/n1.lyx108
1 files changed, 54 insertions, 54 deletions
diff --git a/gcs/n1.lyx b/gcs/n1.lyx
index 75dd0c2..d5a87e7 100644
--- a/gcs/n1.lyx
+++ b/gcs/n1.lyx
@@ -119,7 +119,7 @@ vector tangente
\end_inset
a
-\begin_inset Formula $\alpha':=(\alpha_{1}',\dots,\alpha_{n}'):I\to\mathbb{R}^{n}$
+\begin_inset Formula $\alpha'\coloneqq (\alpha_{1}',\dots,\alpha_{n}'):I\to\mathbb{R}^{n}$
\end_inset
.
@@ -140,7 +140,7 @@ alabeada
hélice cilíndrica
\series default
,
-\begin_inset Formula $\alpha(t):=(a\cos t,a\sin t,bt)$
+\begin_inset Formula $\alpha(t)\coloneqq (a\cos t,a\sin t,bt)$
\end_inset
para ciertos
@@ -215,7 +215,7 @@ cambio de parámetro
\end_inset
, y si tenemos una curva
-\begin_inset Formula $\alpha:=I\to\mathbb{R}^{n}$
+\begin_inset Formula $\alpha\coloneqq I\to\mathbb{R}^{n}$
\end_inset
, llamamos
@@ -231,7 +231,7 @@ reparametrización
\end_inset
a la curva
-\begin_inset Formula $\beta:=\alpha\circ h:J\to\mathbb{R}^{n}$
+\begin_inset Formula $\beta\coloneqq \alpha\circ h:J\to\mathbb{R}^{n}$
\end_inset
.
@@ -300,7 +300,7 @@ Sean
\end_inset
, y una partición
-\begin_inset Formula $P:=\{a=t_{0}<\dots<t_{m}=b\}$
+\begin_inset Formula $P\coloneqq \{a=t_{0}<\dots<t_{m}=b\}$
\end_inset
, llamamos
@@ -316,7 +316,7 @@ longitud
\end_inset
a
-\begin_inset Formula $L(\alpha,P):=\sum_{k=1}^{m}|\alpha(t_{k})-\alpha(t_{k-1})|$
+\begin_inset Formula $L(\alpha,P)\coloneqq \sum_{k=1}^{m}|\alpha(t_{k})-\alpha(t_{k-1})|$
\end_inset
, y longitud de
@@ -375,7 +375,7 @@ L_{a}^{b}(\alpha)=\int_{a}^{b}|\alpha'(t)|dt.
Demostración:
\series default
Sea
-\begin_inset Formula $P:=\{a=t_{0}<\dots<t_{m}=b\}\in{\cal P}[a,b]$
+\begin_inset Formula $P\coloneqq \{a=t_{0}<\dots<t_{m}=b\}\in{\cal P}[a,b]$
\end_inset
, por el teorema de los valores intermedios, en cada
@@ -391,7 +391,7 @@ Demostración:
\end_inset
, luego si
-\begin_inset Formula $f(s_{1},\dots,s_{n}):=|(\alpha'_{1}(s_{1}),\dots,\alpha'_{n}(s_{n}))|$
+\begin_inset Formula $f(s_{1},\dots,s_{n})\coloneqq |(\alpha'_{1}(s_{1}),\dots,\alpha'_{n}(s_{n}))|$
\end_inset
,
@@ -490,7 +490,7 @@ Con esto, la longitud de una curva es independiente de su parametrización,
\end_inset
es un cambio de parámetro que conserva la orientación y
-\begin_inset Formula $\beta:=\alpha\circ h$
+\begin_inset Formula $\beta\coloneqq \alpha\circ h$
\end_inset
,
@@ -556,7 +556,7 @@ p.p.a.
\end_inset
es un cambio de parámetro tal que
-\begin_inset Formula $\beta:=\alpha\circ h$
+\begin_inset Formula $\beta\coloneqq \alpha\circ h$
\end_inset
es p.p.a,
@@ -724,7 +724,7 @@ g(t):=\int_{t_{0}}^{t}|\alpha'(u)|du=L_{t_{0}}^{t}(\alpha),
\end_inset
, luego por el teorema de la función inversa,
-\begin_inset Formula $J:=g(I)$
+\begin_inset Formula $J\coloneqq g(I)$
\end_inset
es abierto y
@@ -733,7 +733,7 @@ g(t):=\int_{t_{0}}^{t}|\alpha'(u)|du=L_{t_{0}}^{t}(\alpha),
es un difeomorfismo.
Llamando
-\begin_inset Formula $h:=g^{-1}$
+\begin_inset Formula $h\coloneqq g^{-1}$
\end_inset
, como
@@ -769,11 +769,11 @@ catenaria
distribuida uniformemente, suspendida por sus extremos y sometida a un
campo gravitatorio uniforme.
Se expresa como
-\begin_inset Formula $\alpha(t):=(t,\cosh t)$
+\begin_inset Formula $\alpha(t)\coloneqq (t,\cosh t)$
\end_inset
, y admite una reparametrización por longitud de arco
-\begin_inset Formula $\beta(s):=(\arg\sinh s,\sqrt{1+s^{2}})$
+\begin_inset Formula $\beta(s)\coloneqq (\arg\sinh s,\sqrt{1+s^{2}})$
\end_inset
de igual orientación.
@@ -790,7 +790,7 @@ g(t):=\int_{0}^{t}|\alpha'(u)|du=\int_{0}^{t}|(1,\sinh u)|du=\int_{0}^{t}\cosh u
\end_inset
entonces
-\begin_inset Formula $h(s):=g^{-1}(s)=\arg\sinh s$
+\begin_inset Formula $h(s)\coloneqq g^{-1}(s)=\arg\sinh s$
\end_inset
, luego la reparametrización es
@@ -803,7 +803,7 @@ entonces
\end_deeper
\begin_layout Enumerate
Dada la circunferencia
-\begin_inset Formula $\alpha(t):=p+(r\cos t,r\sin t)$
+\begin_inset Formula $\alpha(t)\coloneqq p+(r\cos t,r\sin t)$
\end_inset
para ciertos
@@ -815,7 +815,7 @@ Dada la circunferencia
\end_inset
, la reparametrización por longitud de arco es
-\begin_inset Formula $\beta(s):=p+(r\cos\frac{s}{r},r\sin\frac{s}{r})$
+\begin_inset Formula $\beta(s)\coloneqq p+(r\cos\frac{s}{r},r\sin\frac{s}{r})$
\end_inset
.
@@ -831,7 +831,7 @@ g(t):=\int_{0}^{t}|\alpha'(u)|du=\int_{0}^{t}r\,du=rt,
\end_inset
luego
-\begin_inset Formula $h(s):=g^{-1}(s)=\frac{s}{r}$
+\begin_inset Formula $h(s)\coloneqq g^{-1}(s)=\frac{s}{r}$
\end_inset
y la reparametrización es
@@ -874,11 +874,11 @@ Entonces, dada una curva
\end_inset
p.p.a., si
-\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$
+\begin_inset Formula $\mathbf{t}(s)\coloneqq \alpha'(s)$
\end_inset
y
-\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$
+\begin_inset Formula $\mathbf{n}(s)\coloneqq J\mathbf{t}(s)$
\end_inset
es su
@@ -1016,7 +1016,7 @@ Si
radio de curvatura
\series default
a
-\begin_inset Formula $\rho(s):=\frac{1}{|\kappa(s)|}$
+\begin_inset Formula $\rho(s)\coloneqq \frac{1}{|\kappa(s)|}$
\end_inset
.
@@ -1042,7 +1042,7 @@ El radio de curvatura de una circunferencia de radio
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $\alpha(s):=p+r(\cos\frac{s}{r},\sin\frac{s}{r})$
+\begin_inset Formula $\alpha(s)\coloneqq p+r(\cos\frac{s}{r},\sin\frac{s}{r})$
\end_inset
con
@@ -1080,7 +1080,7 @@ La curvatura de una recta es 0.
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $\alpha(s):=p+sv$
+\begin_inset Formula $\alpha(s)\coloneqq p+sv$
\end_inset
para ciertos
@@ -1109,7 +1109,7 @@ Sea
\end_deeper
\begin_layout Enumerate
La catenaria
-\begin_inset Formula $\alpha(s):=(\arg\sinh s,\sqrt{1+s^{2}})$
+\begin_inset Formula $\alpha(s)\coloneqq (\arg\sinh s,\sqrt{1+s^{2}})$
\end_inset
tiene radio de curvatura
@@ -1277,7 +1277,7 @@ movimiento rígido
\end_inset
dada por
-\begin_inset Formula $M(x):=Ax+b$
+\begin_inset Formula $M(x)\coloneqq Ax+b$
\end_inset
para ciertos
@@ -1326,7 +1326,7 @@ Sean
\end_inset
dada por
-\begin_inset Formula $\varphi(s):=\int_{s_{0}}^{s}\kappa$
+\begin_inset Formula $\varphi(s)\coloneqq \int_{s_{0}}^{s}\kappa$
\end_inset
y
@@ -1424,15 +1424,15 @@ Sean
.
Sean entonces
-\begin_inset Formula $b:=\beta(s_{0})-A\alpha(s_{0})$
+\begin_inset Formula $b\coloneqq \beta(s_{0})-A\alpha(s_{0})$
\end_inset
,
-\begin_inset Formula $Mx:=Ax+b$
+\begin_inset Formula $Mx\coloneqq Ax+b$
\end_inset
un movimiento rígido y
-\begin_inset Formula $\gamma:=M\circ\alpha$
+\begin_inset Formula $\gamma\coloneqq M\circ\alpha$
\end_inset
, y queremos ver que
@@ -1449,7 +1449,7 @@ Sean
\end_inset
, luego si
-\begin_inset Formula $f(s):=\frac{1}{2}|t_{\beta}(s)-t_{\gamma}(s)|^{2}$
+\begin_inset Formula $f(s)\coloneqq \frac{1}{2}|t_{\beta}(s)-t_{\gamma}(s)|^{2}$
\end_inset
, entonces
@@ -1516,7 +1516,7 @@ Dados una curva regular
\end_inset
que preserva la orientación tal que
-\begin_inset Formula $\beta:=\alpha\circ h$
+\begin_inset Formula $\beta\coloneqq \alpha\circ h$
\end_inset
es p.p.a., llamamos
@@ -1565,7 +1565,7 @@ Demostración:
\end_inset
, luego para
-\begin_inset Formula $s:=h^{-1}(t)$
+\begin_inset Formula $s\coloneqq h^{-1}(t)$
\end_inset
,
@@ -1602,19 +1602,19 @@ Sean
\end_inset
,
-\begin_inset Formula $p_{0}:=\alpha(s_{0})$
+\begin_inset Formula $p_{0}\coloneqq \alpha(s_{0})$
\end_inset
,
-\begin_inset Formula $\mathbf{t}_{0}:=\mathbf{t}(s_{0})$
+\begin_inset Formula $\mathbf{t}_{0}\coloneqq \mathbf{t}(s_{0})$
\end_inset
,
-\begin_inset Formula $\mathbf{n}_{0}:=\mathbf{n}(s_{0})$
+\begin_inset Formula $\mathbf{n}_{0}\coloneqq \mathbf{n}(s_{0})$
\end_inset
,
-\begin_inset Formula $\ell:=p_{0}+\langle\mathbf{t}_{0}\rangle$
+\begin_inset Formula $\ell\coloneqq p_{0}+\langle\mathbf{t}_{0}\rangle$
\end_inset
y
@@ -1634,7 +1634,7 @@ distancia orientada
\end_inset
a
-\begin_inset Formula $\text{dist}(p,\ell):=\langle p-p_{0},\mathbf{n}_{0}\rangle$
+\begin_inset Formula $\text{dist}(p,\ell)\coloneqq \langle p-p_{0},\mathbf{n}_{0}\rangle$
\end_inset
.
@@ -1647,11 +1647,11 @@ distancia orientada
\end_inset
en dos semiplanos
-\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$
+\begin_inset Formula $H^{+}\coloneqq \{p\mid \text{dist}(p,\ell)\geq0\}$
\end_inset
y
-\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$
+\begin_inset Formula $H^{-}\coloneqq \{p\mid \text{dist}(p,\ell)\leq0\}$
\end_inset
, de modo que
@@ -1685,7 +1685,7 @@ Si
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $f(s):=\text{dist}(\alpha(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle$
+\begin_inset Formula $f(s)\coloneqq \text{dist}(\alpha(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle$
\end_inset
, entonces
@@ -1929,7 +1929,7 @@ Sean
\end_inset
y
-\begin_inset Formula $f(s):=\text{dist}(\alpha(s),\ell)-\text{dist}(\beta(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle-\langle\beta(s)-p_{0},\mathbf{n}_{0}\rangle=\langle\alpha(s)-\beta(s),\mathbf{n}_{0}\rangle$
+\begin_inset Formula $f(s)\coloneqq \text{dist}(\alpha(s),\ell)-\text{dist}(\beta(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle-\langle\beta(s)-p_{0},\mathbf{n}_{0}\rangle=\langle\alpha(s)-\beta(s),\mathbf{n}_{0}\rangle$
\end_inset
, entonces
@@ -2065,7 +2065,7 @@ curvatura
\end_inset
a
-\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$
+\begin_inset Formula $\kappa(s)\coloneqq |\mathbf{t}'(s)|$
\end_inset
.
@@ -2147,7 +2147,7 @@ torsión
\end_inset
dada por
-\begin_inset Formula $\tau(s):=\langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$
+\begin_inset Formula $\tau(s)\coloneqq \langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$
\end_inset
.
@@ -2321,7 +2321,7 @@ status open
\end_inset
Si
-\begin_inset Formula $\alpha(s):=p+sv$
+\begin_inset Formula $\alpha(s)\coloneqq p+sv$
\end_inset
,
@@ -2472,7 +2472,7 @@ Si
\end_inset
y, si
-\begin_inset Formula $f(s):=\langle\alpha(s),\mathbf{b}(s)\rangle$
+\begin_inset Formula $f(s)\coloneqq \langle\alpha(s),\mathbf{b}(s)\rangle$
\end_inset
,
@@ -2513,7 +2513,7 @@ Sean
\end_inset
un cambio de parámetro que conserva la orientación y tal que
-\begin_inset Formula $\beta:=\alpha\circ h$
+\begin_inset Formula $\beta\coloneqq \alpha\circ h$
\end_inset
es p.p.a., definimos la curvatura de
@@ -2521,11 +2521,11 @@ Sean
\end_inset
como
-\begin_inset Formula $\kappa_{\alpha}(t):=\kappa_{\beta}(h^{-1}(t))$
+\begin_inset Formula $\kappa_{\alpha}(t)\coloneqq \kappa_{\beta}(h^{-1}(t))$
\end_inset
y, si esta no se anula, la torsión como
-\begin_inset Formula $\tau_{\alpha}(t):=\tau_{\beta}(h^{-1}(t))$
+\begin_inset Formula $\tau_{\alpha}(t)\coloneqq \tau_{\beta}(h^{-1}(t))$
\end_inset
.
@@ -2542,7 +2542,7 @@ Sean
Demostración:
\series default
Sea
-\begin_inset Formula $s:=h^{-1}(t)$
+\begin_inset Formula $s\coloneqq h^{-1}(t)$
\end_inset
,
@@ -2792,7 +2792,7 @@ Sea entonces
\end_inset
la curva dada por
-\begin_inset Formula $\alpha(s):=\int_{s_{0}}^{s}\mathbf{t}(u)du$
+\begin_inset Formula $\alpha(s)\coloneqq \int_{s_{0}}^{s}\mathbf{t}(u)du$
\end_inset
, para todo
@@ -2883,15 +2883,15 @@ Sean
.
Sean entonces
-\begin_inset Formula $b:=\beta(s_{0})-A\alpha(s_{0})$
+\begin_inset Formula $b\coloneqq \beta(s_{0})-A\alpha(s_{0})$
\end_inset
,
-\begin_inset Formula $M(x):=Ax+b$
+\begin_inset Formula $M(x)\coloneqq Ax+b$
\end_inset
un movimiento rígido y
-\begin_inset Formula $\gamma:=M\circ\alpha$
+\begin_inset Formula $\gamma\coloneqq M\circ\alpha$
\end_inset
, y queremos ver que
@@ -2918,7 +2918,7 @@ Se tiene
\end_inset
Sea ahora
-\begin_inset Formula $f(s):=\frac{1}{2}(|\mathbf{t}_{\beta}(s)-\mathbf{t}_{\gamma}(s)|^{2}+|\mathbf{n}_{\beta}(s)-\mathbf{n}_{\gamma}(s)|^{2}+|\mathbf{b}_{\beta}(s)-\mathbf{b}_{\gamma}(s)|^{2})$
+\begin_inset Formula $f(s)\coloneqq \frac{1}{2}(|\mathbf{t}_{\beta}(s)-\mathbf{t}_{\gamma}(s)|^{2}+|\mathbf{n}_{\beta}(s)-\mathbf{n}_{\gamma}(s)|^{2}+|\mathbf{b}_{\beta}(s)-\mathbf{b}_{\gamma}(s)|^{2})$
\end_inset
, entonces