diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /gcs/n1.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'gcs/n1.lyx')
| -rw-r--r-- | gcs/n1.lyx | 108 |
1 files changed, 54 insertions, 54 deletions
@@ -119,7 +119,7 @@ vector tangente \end_inset a -\begin_inset Formula $\alpha':=(\alpha_{1}',\dots,\alpha_{n}'):I\to\mathbb{R}^{n}$ +\begin_inset Formula $\alpha'\coloneqq (\alpha_{1}',\dots,\alpha_{n}'):I\to\mathbb{R}^{n}$ \end_inset . @@ -140,7 +140,7 @@ alabeada hélice cilíndrica \series default , -\begin_inset Formula $\alpha(t):=(a\cos t,a\sin t,bt)$ +\begin_inset Formula $\alpha(t)\coloneqq (a\cos t,a\sin t,bt)$ \end_inset para ciertos @@ -215,7 +215,7 @@ cambio de parámetro \end_inset , y si tenemos una curva -\begin_inset Formula $\alpha:=I\to\mathbb{R}^{n}$ +\begin_inset Formula $\alpha\coloneqq I\to\mathbb{R}^{n}$ \end_inset , llamamos @@ -231,7 +231,7 @@ reparametrización \end_inset a la curva -\begin_inset Formula $\beta:=\alpha\circ h:J\to\mathbb{R}^{n}$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h:J\to\mathbb{R}^{n}$ \end_inset . @@ -300,7 +300,7 @@ Sean \end_inset , y una partición -\begin_inset Formula $P:=\{a=t_{0}<\dots<t_{m}=b\}$ +\begin_inset Formula $P\coloneqq \{a=t_{0}<\dots<t_{m}=b\}$ \end_inset , llamamos @@ -316,7 +316,7 @@ longitud \end_inset a -\begin_inset Formula $L(\alpha,P):=\sum_{k=1}^{m}|\alpha(t_{k})-\alpha(t_{k-1})|$ +\begin_inset Formula $L(\alpha,P)\coloneqq \sum_{k=1}^{m}|\alpha(t_{k})-\alpha(t_{k-1})|$ \end_inset , y longitud de @@ -375,7 +375,7 @@ L_{a}^{b}(\alpha)=\int_{a}^{b}|\alpha'(t)|dt. Demostración: \series default Sea -\begin_inset Formula $P:=\{a=t_{0}<\dots<t_{m}=b\}\in{\cal P}[a,b]$ +\begin_inset Formula $P\coloneqq \{a=t_{0}<\dots<t_{m}=b\}\in{\cal P}[a,b]$ \end_inset , por el teorema de los valores intermedios, en cada @@ -391,7 +391,7 @@ Demostración: \end_inset , luego si -\begin_inset Formula $f(s_{1},\dots,s_{n}):=|(\alpha'_{1}(s_{1}),\dots,\alpha'_{n}(s_{n}))|$ +\begin_inset Formula $f(s_{1},\dots,s_{n})\coloneqq |(\alpha'_{1}(s_{1}),\dots,\alpha'_{n}(s_{n}))|$ \end_inset , @@ -490,7 +490,7 @@ Con esto, la longitud de una curva es independiente de su parametrización, \end_inset es un cambio de parámetro que conserva la orientación y -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset , @@ -556,7 +556,7 @@ p.p.a. \end_inset es un cambio de parámetro tal que -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es p.p.a, @@ -724,7 +724,7 @@ g(t):=\int_{t_{0}}^{t}|\alpha'(u)|du=L_{t_{0}}^{t}(\alpha), \end_inset , luego por el teorema de la función inversa, -\begin_inset Formula $J:=g(I)$ +\begin_inset Formula $J\coloneqq g(I)$ \end_inset es abierto y @@ -733,7 +733,7 @@ g(t):=\int_{t_{0}}^{t}|\alpha'(u)|du=L_{t_{0}}^{t}(\alpha), es un difeomorfismo. Llamando -\begin_inset Formula $h:=g^{-1}$ +\begin_inset Formula $h\coloneqq g^{-1}$ \end_inset , como @@ -769,11 +769,11 @@ catenaria distribuida uniformemente, suspendida por sus extremos y sometida a un campo gravitatorio uniforme. Se expresa como -\begin_inset Formula $\alpha(t):=(t,\cosh t)$ +\begin_inset Formula $\alpha(t)\coloneqq (t,\cosh t)$ \end_inset , y admite una reparametrización por longitud de arco -\begin_inset Formula $\beta(s):=(\arg\sinh s,\sqrt{1+s^{2}})$ +\begin_inset Formula $\beta(s)\coloneqq (\arg\sinh s,\sqrt{1+s^{2}})$ \end_inset de igual orientación. @@ -790,7 +790,7 @@ g(t):=\int_{0}^{t}|\alpha'(u)|du=\int_{0}^{t}|(1,\sinh u)|du=\int_{0}^{t}\cosh u \end_inset entonces -\begin_inset Formula $h(s):=g^{-1}(s)=\arg\sinh s$ +\begin_inset Formula $h(s)\coloneqq g^{-1}(s)=\arg\sinh s$ \end_inset , luego la reparametrización es @@ -803,7 +803,7 @@ entonces \end_deeper \begin_layout Enumerate Dada la circunferencia -\begin_inset Formula $\alpha(t):=p+(r\cos t,r\sin t)$ +\begin_inset Formula $\alpha(t)\coloneqq p+(r\cos t,r\sin t)$ \end_inset para ciertos @@ -815,7 +815,7 @@ Dada la circunferencia \end_inset , la reparametrización por longitud de arco es -\begin_inset Formula $\beta(s):=p+(r\cos\frac{s}{r},r\sin\frac{s}{r})$ +\begin_inset Formula $\beta(s)\coloneqq p+(r\cos\frac{s}{r},r\sin\frac{s}{r})$ \end_inset . @@ -831,7 +831,7 @@ g(t):=\int_{0}^{t}|\alpha'(u)|du=\int_{0}^{t}r\,du=rt, \end_inset luego -\begin_inset Formula $h(s):=g^{-1}(s)=\frac{s}{r}$ +\begin_inset Formula $h(s)\coloneqq g^{-1}(s)=\frac{s}{r}$ \end_inset y la reparametrización es @@ -874,11 +874,11 @@ Entonces, dada una curva \end_inset p.p.a., si -\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$ +\begin_inset Formula $\mathbf{t}(s)\coloneqq \alpha'(s)$ \end_inset y -\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$ +\begin_inset Formula $\mathbf{n}(s)\coloneqq J\mathbf{t}(s)$ \end_inset es su @@ -1016,7 +1016,7 @@ Si radio de curvatura \series default a -\begin_inset Formula $\rho(s):=\frac{1}{|\kappa(s)|}$ +\begin_inset Formula $\rho(s)\coloneqq \frac{1}{|\kappa(s)|}$ \end_inset . @@ -1042,7 +1042,7 @@ El radio de curvatura de una circunferencia de radio \begin_deeper \begin_layout Standard Sea -\begin_inset Formula $\alpha(s):=p+r(\cos\frac{s}{r},\sin\frac{s}{r})$ +\begin_inset Formula $\alpha(s)\coloneqq p+r(\cos\frac{s}{r},\sin\frac{s}{r})$ \end_inset con @@ -1080,7 +1080,7 @@ La curvatura de una recta es 0. \begin_deeper \begin_layout Standard Sea -\begin_inset Formula $\alpha(s):=p+sv$ +\begin_inset Formula $\alpha(s)\coloneqq p+sv$ \end_inset para ciertos @@ -1109,7 +1109,7 @@ Sea \end_deeper \begin_layout Enumerate La catenaria -\begin_inset Formula $\alpha(s):=(\arg\sinh s,\sqrt{1+s^{2}})$ +\begin_inset Formula $\alpha(s)\coloneqq (\arg\sinh s,\sqrt{1+s^{2}})$ \end_inset tiene radio de curvatura @@ -1277,7 +1277,7 @@ movimiento rígido \end_inset dada por -\begin_inset Formula $M(x):=Ax+b$ +\begin_inset Formula $M(x)\coloneqq Ax+b$ \end_inset para ciertos @@ -1326,7 +1326,7 @@ Sean \end_inset dada por -\begin_inset Formula $\varphi(s):=\int_{s_{0}}^{s}\kappa$ +\begin_inset Formula $\varphi(s)\coloneqq \int_{s_{0}}^{s}\kappa$ \end_inset y @@ -1424,15 +1424,15 @@ Sean . Sean entonces -\begin_inset Formula $b:=\beta(s_{0})-A\alpha(s_{0})$ +\begin_inset Formula $b\coloneqq \beta(s_{0})-A\alpha(s_{0})$ \end_inset , -\begin_inset Formula $Mx:=Ax+b$ +\begin_inset Formula $Mx\coloneqq Ax+b$ \end_inset un movimiento rígido y -\begin_inset Formula $\gamma:=M\circ\alpha$ +\begin_inset Formula $\gamma\coloneqq M\circ\alpha$ \end_inset , y queremos ver que @@ -1449,7 +1449,7 @@ Sean \end_inset , luego si -\begin_inset Formula $f(s):=\frac{1}{2}|t_{\beta}(s)-t_{\gamma}(s)|^{2}$ +\begin_inset Formula $f(s)\coloneqq \frac{1}{2}|t_{\beta}(s)-t_{\gamma}(s)|^{2}$ \end_inset , entonces @@ -1516,7 +1516,7 @@ Dados una curva regular \end_inset que preserva la orientación tal que -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es p.p.a., llamamos @@ -1565,7 +1565,7 @@ Demostración: \end_inset , luego para -\begin_inset Formula $s:=h^{-1}(t)$ +\begin_inset Formula $s\coloneqq h^{-1}(t)$ \end_inset , @@ -1602,19 +1602,19 @@ Sean \end_inset , -\begin_inset Formula $p_{0}:=\alpha(s_{0})$ +\begin_inset Formula $p_{0}\coloneqq \alpha(s_{0})$ \end_inset , -\begin_inset Formula $\mathbf{t}_{0}:=\mathbf{t}(s_{0})$ +\begin_inset Formula $\mathbf{t}_{0}\coloneqq \mathbf{t}(s_{0})$ \end_inset , -\begin_inset Formula $\mathbf{n}_{0}:=\mathbf{n}(s_{0})$ +\begin_inset Formula $\mathbf{n}_{0}\coloneqq \mathbf{n}(s_{0})$ \end_inset , -\begin_inset Formula $\ell:=p_{0}+\langle\mathbf{t}_{0}\rangle$ +\begin_inset Formula $\ell\coloneqq p_{0}+\langle\mathbf{t}_{0}\rangle$ \end_inset y @@ -1634,7 +1634,7 @@ distancia orientada \end_inset a -\begin_inset Formula $\text{dist}(p,\ell):=\langle p-p_{0},\mathbf{n}_{0}\rangle$ +\begin_inset Formula $\text{dist}(p,\ell)\coloneqq \langle p-p_{0},\mathbf{n}_{0}\rangle$ \end_inset . @@ -1647,11 +1647,11 @@ distancia orientada \end_inset en dos semiplanos -\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$ +\begin_inset Formula $H^{+}\coloneqq \{p\mid \text{dist}(p,\ell)\geq0\}$ \end_inset y -\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$ +\begin_inset Formula $H^{-}\coloneqq \{p\mid \text{dist}(p,\ell)\leq0\}$ \end_inset , de modo que @@ -1685,7 +1685,7 @@ Si \begin_deeper \begin_layout Standard Sea -\begin_inset Formula $f(s):=\text{dist}(\alpha(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle$ +\begin_inset Formula $f(s)\coloneqq \text{dist}(\alpha(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle$ \end_inset , entonces @@ -1929,7 +1929,7 @@ Sean \end_inset y -\begin_inset Formula $f(s):=\text{dist}(\alpha(s),\ell)-\text{dist}(\beta(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle-\langle\beta(s)-p_{0},\mathbf{n}_{0}\rangle=\langle\alpha(s)-\beta(s),\mathbf{n}_{0}\rangle$ +\begin_inset Formula $f(s)\coloneqq \text{dist}(\alpha(s),\ell)-\text{dist}(\beta(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle-\langle\beta(s)-p_{0},\mathbf{n}_{0}\rangle=\langle\alpha(s)-\beta(s),\mathbf{n}_{0}\rangle$ \end_inset , entonces @@ -2065,7 +2065,7 @@ curvatura \end_inset a -\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$ +\begin_inset Formula $\kappa(s)\coloneqq |\mathbf{t}'(s)|$ \end_inset . @@ -2147,7 +2147,7 @@ torsión \end_inset dada por -\begin_inset Formula $\tau(s):=\langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$ +\begin_inset Formula $\tau(s)\coloneqq \langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$ \end_inset . @@ -2321,7 +2321,7 @@ status open \end_inset Si -\begin_inset Formula $\alpha(s):=p+sv$ +\begin_inset Formula $\alpha(s)\coloneqq p+sv$ \end_inset , @@ -2472,7 +2472,7 @@ Si \end_inset y, si -\begin_inset Formula $f(s):=\langle\alpha(s),\mathbf{b}(s)\rangle$ +\begin_inset Formula $f(s)\coloneqq \langle\alpha(s),\mathbf{b}(s)\rangle$ \end_inset , @@ -2513,7 +2513,7 @@ Sean \end_inset un cambio de parámetro que conserva la orientación y tal que -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es p.p.a., definimos la curvatura de @@ -2521,11 +2521,11 @@ Sean \end_inset como -\begin_inset Formula $\kappa_{\alpha}(t):=\kappa_{\beta}(h^{-1}(t))$ +\begin_inset Formula $\kappa_{\alpha}(t)\coloneqq \kappa_{\beta}(h^{-1}(t))$ \end_inset y, si esta no se anula, la torsión como -\begin_inset Formula $\tau_{\alpha}(t):=\tau_{\beta}(h^{-1}(t))$ +\begin_inset Formula $\tau_{\alpha}(t)\coloneqq \tau_{\beta}(h^{-1}(t))$ \end_inset . @@ -2542,7 +2542,7 @@ Sean Demostración: \series default Sea -\begin_inset Formula $s:=h^{-1}(t)$ +\begin_inset Formula $s\coloneqq h^{-1}(t)$ \end_inset , @@ -2792,7 +2792,7 @@ Sea entonces \end_inset la curva dada por -\begin_inset Formula $\alpha(s):=\int_{s_{0}}^{s}\mathbf{t}(u)du$ +\begin_inset Formula $\alpha(s)\coloneqq \int_{s_{0}}^{s}\mathbf{t}(u)du$ \end_inset , para todo @@ -2883,15 +2883,15 @@ Sean . Sean entonces -\begin_inset Formula $b:=\beta(s_{0})-A\alpha(s_{0})$ +\begin_inset Formula $b\coloneqq \beta(s_{0})-A\alpha(s_{0})$ \end_inset , -\begin_inset Formula $M(x):=Ax+b$ +\begin_inset Formula $M(x)\coloneqq Ax+b$ \end_inset un movimiento rígido y -\begin_inset Formula $\gamma:=M\circ\alpha$ +\begin_inset Formula $\gamma\coloneqq M\circ\alpha$ \end_inset , y queremos ver que @@ -2918,7 +2918,7 @@ Se tiene \end_inset Sea ahora -\begin_inset Formula $f(s):=\frac{1}{2}(|\mathbf{t}_{\beta}(s)-\mathbf{t}_{\gamma}(s)|^{2}+|\mathbf{n}_{\beta}(s)-\mathbf{n}_{\gamma}(s)|^{2}+|\mathbf{b}_{\beta}(s)-\mathbf{b}_{\gamma}(s)|^{2})$ +\begin_inset Formula $f(s)\coloneqq \frac{1}{2}(|\mathbf{t}_{\beta}(s)-\mathbf{t}_{\gamma}(s)|^{2}+|\mathbf{n}_{\beta}(s)-\mathbf{n}_{\gamma}(s)|^{2}+|\mathbf{b}_{\beta}(s)-\mathbf{b}_{\gamma}(s)|^{2})$ \end_inset , entonces |
