diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /gcs/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'gcs/n3.lyx')
| -rw-r--r-- | gcs/n3.lyx | 140 |
1 files changed, 70 insertions, 70 deletions
@@ -193,7 +193,7 @@ orientable \end_inset , basta tomar la orientación -\begin_inset Formula $N(p):=\xi(p)/|\xi(p)|$ +\begin_inset Formula $N(p)\coloneqq \xi(p)/|\xi(p)|$ \end_inset . @@ -258,11 +258,11 @@ Claramente \end_inset es diferenciable, y es inyectiva en -\begin_inset Formula $U_{1}:=(0,2\pi)\times(-1,1)$ +\begin_inset Formula $U_{1}\coloneqq (0,2\pi)\times(-1,1)$ \end_inset y en -\begin_inset Formula $U_{2}:=(-\pi,\pi)\times(-1,1)$ +\begin_inset Formula $U_{2}\coloneqq (-\pi,\pi)\times(-1,1)$ \end_inset . @@ -325,7 +325,7 @@ El plano \end_inset admite la orientación -\begin_inset Formula $N(p):=v/|v|$ +\begin_inset Formula $N(p)\coloneqq v/|v|$ \end_inset . @@ -349,7 +349,7 @@ Dados \end_inset , la superficie de nivel -\begin_inset Formula $S:=f^{-1}(c)$ +\begin_inset Formula $S\coloneqq f^{-1}(c)$ \end_inset admite la orientación @@ -361,7 +361,7 @@ N(p):=\frac{\nabla f(p)}{|\nabla f(p)|}, \end_inset donde -\begin_inset Formula $\nabla f(p):=(\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p))$ +\begin_inset Formula $\nabla f(p)\coloneqq (\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p))$ \end_inset es el @@ -386,7 +386,7 @@ Sean \end_inset , -\begin_inset Formula $\alpha:=(x,y,z):I\to S$ +\begin_inset Formula $\alpha\coloneqq (x,y,z):I\to S$ \end_inset una curva diferenciable con @@ -394,7 +394,7 @@ Sean \end_inset y -\begin_inset Formula $v:=\alpha'(0)\in T_{p}S$ +\begin_inset Formula $v\coloneqq \alpha'(0)\in T_{p}S$ \end_inset , para @@ -456,7 +456,7 @@ Sean \begin_deeper \begin_layout Standard Sea -\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}+z^{2}$ +\begin_inset Formula $f(x,y,z)\coloneqq x^{2}+y^{2}+z^{2}$ \end_inset , @@ -519,7 +519,7 @@ Dada \end_inset , el grafo -\begin_inset Formula $S:=\{(x,y,f(x,y))\}_{x,y\in U}$ +\begin_inset Formula $S\coloneqq \{(x,y,f(x,y))\}_{x,y\in U}$ \end_inset admite la orientación @@ -535,7 +535,7 @@ Dada la parametrización \end_inset con -\begin_inset Formula $X(u,v):=(u,v,f(u,v))$ +\begin_inset Formula $X(u,v)\coloneqq (u,v,f(u,v))$ \end_inset , @@ -576,11 +576,11 @@ Dos cartas compatibles \series default si -\begin_inset Formula $V:=X(U)$ +\begin_inset Formula $V\coloneqq X(U)$ \end_inset y -\begin_inset Formula $V':=X'(U')$ +\begin_inset Formula $V'\coloneqq X'(U')$ \end_inset son disjuntos o @@ -635,7 +635,7 @@ status open \end_inset Sean -\begin_inset Formula ${\cal A}:=\{(U_{i},X_{i})\}_{i\in I}$ +\begin_inset Formula ${\cal A}\coloneqq \{(U_{i},X_{i})\}_{i\in I}$ \end_inset un atlas de cartas compatibles en @@ -680,7 +680,7 @@ N(X(u,v)):=N(u,v):=\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}(u,v), \end_inset , -\begin_inset Formula $\overline{N}(\overline{X}(u,v)):=\overline{N}(u,v):=\frac{\overline{X}_{u}\cap\overline{X}_{v}}{|\overline{X}_{u}\cap\overline{X}_{v}|}(u,v)$ +\begin_inset Formula $\overline{N}(\overline{X}(u,v))\coloneqq \overline{N}(u,v)\coloneqq \frac{\overline{X}_{u}\cap\overline{X}_{v}}{|\overline{X}_{u}\cap\overline{X}_{v}|}(u,v)$ \end_inset y @@ -802,7 +802,7 @@ Sea \end_inset con -\begin_inset Formula $V:=X_{a}(U_{a})\cap X_{b}(U_{b})\neq\emptyset$ +\begin_inset Formula $V\coloneqq X_{a}(U_{a})\cap X_{b}(U_{b})\neq\emptyset$ \end_inset , queremos ver que el determinante del cambio de coordenadas @@ -827,11 +827,11 @@ Sea \end_inset , sean -\begin_inset Formula $q_{a}:=X_{a}^{-1}(p)$ +\begin_inset Formula $q_{a}\coloneqq X_{a}^{-1}(p)$ \end_inset y -\begin_inset Formula $q_{b}:=X_{b}^{-1}(p)$ +\begin_inset Formula $q_{b}\coloneqq X_{b}^{-1}(p)$ \end_inset , entonces @@ -864,15 +864,15 @@ En adelante, cuando consideremos una parametrización \end_inset , escribiremos -\begin_inset Formula $N(u,v):=N(X(u,v))$ +\begin_inset Formula $N(u,v)\coloneqq N(X(u,v))$ \end_inset , -\begin_inset Formula $N_{u}:=\frac{\partial(N\circ X)}{\partial u}$ +\begin_inset Formula $N_{u}\coloneqq \frac{\partial(N\circ X)}{\partial u}$ \end_inset y -\begin_inset Formula $N_{v}:=\frac{\partial(N\circ X)}{\partial v}$ +\begin_inset Formula $N_{v}\coloneqq \frac{\partial(N\circ X)}{\partial v}$ \end_inset . @@ -881,7 +881,7 @@ En adelante, cuando consideremos una parametrización \end_inset , -\begin_inset Formula $f_{x_{i}}:=\frac{\partial f}{\partial x_{i}}$ +\begin_inset Formula $f_{x_{i}}\coloneqq \frac{\partial f}{\partial x_{i}}$ \end_inset . @@ -923,7 +923,7 @@ La imagen esférica de un plano es unipuntual. \begin_deeper \begin_layout Standard Dado el plano -\begin_inset Formula $\Pi:=p_{0}+\langle v\rangle\subseteq\mathbb{R}^{3}$ +\begin_inset Formula $\Pi\coloneqq p_{0}+\langle v\rangle\subseteq\mathbb{R}^{3}$ \end_inset , donde podemos suponer @@ -931,7 +931,7 @@ Dado el plano \end_inset unitario, la imagen de -\begin_inset Formula $N(p):=v$ +\begin_inset Formula $N(p)\coloneqq v$ \end_inset es @@ -1006,7 +1006,7 @@ La imagen esférica de un cilindro es un circulo máximo de la esfera. \begin_deeper \begin_layout Standard Los cilindros se obtienen por un movimiento de -\begin_inset Formula $S_{r}:=\{x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $S_{r}\coloneqq \{x^{2}+y^{2}=r^{2}\}$ \end_inset para algún @@ -1031,7 +1031,7 @@ El catenoide \series default , -\begin_inset Formula $C:=\{x^{2}+y^{2}=\cosh^{2}z\}$ +\begin_inset Formula $C\coloneqq \{x^{2}+y^{2}=\cosh^{2}z\}$ \end_inset , tiene imagen esférica @@ -1039,7 +1039,7 @@ catenoide \end_inset , donde -\begin_inset Formula $\mathsf{N}:=(0,0,1)$ +\begin_inset Formula $\mathsf{N}\coloneqq (0,0,1)$ \end_inset es el @@ -1047,7 +1047,7 @@ catenoide polo norte \series default y -\begin_inset Formula $\mathsf{S}:=(0,0,-1)$ +\begin_inset Formula $\mathsf{S}\coloneqq (0,0,-1)$ \end_inset es el @@ -1060,7 +1060,7 @@ polo sur \begin_deeper \begin_layout Standard Sea -\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}-\cosh^{2}z$ +\begin_inset Formula $f(x,y,z)\coloneqq x^{2}+y^{2}-\cosh^{2}z$ \end_inset , como @@ -1110,7 +1110,7 @@ Como \end_inset , -\begin_inset Formula $z:=\arg\tanh(-\hat{z})$ +\begin_inset Formula $z\coloneqq \arg\tanh(-\hat{z})$ \end_inset (que existe porque @@ -1118,11 +1118,11 @@ Como \end_inset ), -\begin_inset Formula $x:=\hat{x}\cosh^{2}z$ +\begin_inset Formula $x\coloneqq \hat{x}\cosh^{2}z$ \end_inset e -\begin_inset Formula $y:=\hat{y}\cosh^{2}z$ +\begin_inset Formula $y\coloneqq \hat{y}\cosh^{2}z$ \end_inset , es claro que @@ -1197,7 +1197,7 @@ endomorfismo de Weingarten \end_inset a -\begin_inset Formula $A_{p}:=-dN_{p}:T_{p}S\to T_{p}S$ +\begin_inset Formula $A_{p}\coloneqq -dN_{p}:T_{p}S\to T_{p}S$ \end_inset . @@ -1267,7 +1267,7 @@ Demostración: \end_inset y -\begin_inset Formula $q:=(u_{0},v_{0}):=X^{-1}(p)$ +\begin_inset Formula $q\coloneqq (u_{0},v_{0})\coloneqq X^{-1}(p)$ \end_inset , tomamos la base @@ -1280,7 +1280,7 @@ Demostración: . Sea entonces -\begin_inset Formula $\alpha(u):=X(u_{0}+u,v_{0})$ +\begin_inset Formula $\alpha(u)\coloneqq X(u_{0}+u,v_{0})$ \end_inset , @@ -1367,7 +1367,7 @@ Para el cilindro \end_inset con -\begin_inset Formula $X(u,v):=(r\cos u,r\sin u,v)$ +\begin_inset Formula $X(u,v)\coloneqq (r\cos u,r\sin u,v)$ \end_inset , si @@ -1433,7 +1433,7 @@ paraboloide hiperbólico silla de montar \series default , -\begin_inset Formula $S:=\{y^{2}-x^{2}=z\}=\{(u,v,v^{2}-u^{2})\}_{(u,v)\in\mathbb{R}^{2}}$ +\begin_inset Formula $S\coloneqq \{y^{2}-x^{2}=z\}=\{(u,v,v^{2}-u^{2})\}_{(u,v)\in\mathbb{R}^{2}}$ \end_inset , @@ -1457,7 +1457,7 @@ silla de montar \end_inset dada por -\begin_inset Formula $f(u,v):=v^{2}-u^{2}$ +\begin_inset Formula $f(u,v)\coloneqq v^{2}-u^{2}$ \end_inset . @@ -1516,7 +1516,7 @@ El operador forma \end_inset dada por -\begin_inset Formula $\sigma_{p}(v,w):=\langle A_{p}v,w\rangle$ +\begin_inset Formula $\sigma_{p}(v,w)\coloneqq \langle A_{p}v,w\rangle$ \end_inset , así como una forma cuadrática @@ -1524,7 +1524,7 @@ El operador forma \end_inset dada por -\begin_inset Formula ${\cal II}_{p}(v):=\sigma_{p}(v,v)=\langle A_{p}v,v\rangle$ +\begin_inset Formula ${\cal II}_{p}(v)\coloneqq \sigma_{p}(v,v)=\langle A_{p}v,v\rangle$ \end_inset . @@ -1659,7 +1659,7 @@ la proyección de \begin_deeper \begin_layout Standard Si -\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$ +\begin_inset Formula $\pi\coloneqq \pi_{T_{\alpha(t)}S}$ \end_inset , @@ -1805,7 +1805,7 @@ Sea triedro de Darboux \series default es la base ortonormal positivamente orientada -\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ +\begin_inset Formula $(\alpha'(s),J\alpha'(s)\coloneqq \alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ \end_inset . @@ -1818,7 +1818,7 @@ triedro de Darboux \end_inset donde -\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ +\begin_inset Formula $\kappa_{g}\coloneqq \langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ \end_inset , es la @@ -1917,7 +1917,7 @@ curvatura normal \end_inset a -\begin_inset Formula $\kappa_{n}(v,p):={\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$ +\begin_inset Formula $\kappa_{n}(v,p)\coloneqq {\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$ \end_inset , siendo @@ -1992,7 +1992,7 @@ Dados \end_inset unitario y -\begin_inset Formula $\Pi_{v}:=\text{span}\{v,N(p)\}$ +\begin_inset Formula $\Pi_{v}\coloneqq \text{span}\{v,N(p)\}$ \end_inset , llamamos @@ -2074,7 +2074,7 @@ Si \end_inset , siendo -\begin_inset Formula $\kappa_{n}(s):=\kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$ +\begin_inset Formula $\kappa_{n}(s)\coloneqq \kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$ \end_inset , luego @@ -2275,7 +2275,7 @@ El cilindro \begin_deeper \begin_layout Standard Sean -\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ +\begin_inset Formula $C\coloneqq \{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\coloneqq (r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ \end_inset , @@ -2283,7 +2283,7 @@ Sean \end_inset y la orientación -\begin_inset Formula $N(p):=\frac{1}{r}(x,y,0)$ +\begin_inset Formula $N(p)\coloneqq \frac{1}{r}(x,y,0)$ \end_inset , entonces @@ -2494,7 +2494,7 @@ curvatura de Gauss \end_inset es -\begin_inset Formula $K(p):=\det A_{p}=\kappa_{1}(p)\kappa_{2}(p)$ +\begin_inset Formula $K(p)\coloneqq \det A_{p}=\kappa_{1}(p)\kappa_{2}(p)$ \end_inset , y la @@ -2502,7 +2502,7 @@ curvatura de Gauss curvatura media \series default es -\begin_inset Formula $H(p):=\frac{1}{2}\text{tr}A_{p}=\frac{1}{2}(\kappa_{1}(p)+\kappa_{2}(p))$ +\begin_inset Formula $H(p)\coloneqq \frac{1}{2}\text{tr}A_{p}=\frac{1}{2}(\kappa_{1}(p)+\kappa_{2}(p))$ \end_inset . @@ -2635,7 +2635,7 @@ status open \begin_layout Plain Layout La superficie es el grafo -\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ +\begin_inset Formula $S\coloneqq \{X(u,v)\coloneqq (u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ \end_inset , de modo que @@ -2772,11 +2772,11 @@ Demostración: \end_inset , -\begin_inset Formula $q:=(u_{0},v_{0}):=X^{-1}(p)$ +\begin_inset Formula $q\coloneqq (u_{0},v_{0})\coloneqq X^{-1}(p)$ \end_inset y -\begin_inset Formula $\alpha(u):=X(u_{0}+u,v_{0})$ +\begin_inset Formula $\alpha(u)\coloneqq X(u_{0}+u,v_{0})$ \end_inset , como @@ -2888,7 +2888,7 @@ Si . Sean ahora -\begin_inset Formula $\phi(p):=\langle p,a\rangle$ +\begin_inset Formula $\phi(p)\coloneqq \langle p,a\rangle$ \end_inset , @@ -2956,7 +2956,7 @@ Si \end_inset la función diferenciable dada por -\begin_inset Formula $\phi(p):=p+\frac{1}{c}N(p)$ +\begin_inset Formula $\phi(p)\coloneqq p+\frac{1}{c}N(p)$ \end_inset , para @@ -3068,7 +3068,7 @@ y para \end_inset , si -\begin_inset Formula $q:=X^{-1}(p)$ +\begin_inset Formula $q\coloneqq X^{-1}(p)$ \end_inset y @@ -3117,7 +3117,7 @@ Demostración: \begin_layout Standard Sea -\begin_inset Formula $q:=X^{-1}(p)=(u(0),v(0))$ +\begin_inset Formula $q\coloneqq X^{-1}(p)=(u(0),v(0))$ \end_inset , por linealidad @@ -3535,11 +3535,11 @@ eremember \begin_layout Standard Existe una isometría local entre el plano -\begin_inset Formula $\Pi:=\{z=0\}$ +\begin_inset Formula $\Pi\coloneqq \{z=0\}$ \end_inset y el cilindro -\begin_inset Formula $C:=\mathbb{S}^{1}\times\mathbb{R}$ +\begin_inset Formula $C\coloneqq \mathbb{S}^{1}\times\mathbb{R}$ \end_inset , pero las superficies no son globalmente isométricas. @@ -3571,7 +3571,7 @@ Demostración: \end_inset dada por -\begin_inset Formula $\phi(x,y,0):=(\cos x,\sin x,y)$ +\begin_inset Formula $\phi(x,y,0)\coloneqq (\cos x,\sin x,y)$ \end_inset , que es diferenciable. @@ -3592,7 +3592,7 @@ Demostración: \end_inset dada por -\begin_inset Formula $\alpha(t):=p+tv$ +\begin_inset Formula $\alpha(t)\coloneqq p+tv$ \end_inset , @@ -3689,7 +3689,7 @@ Demostración: \end_inset es un difeomorfismo, por lo que si -\begin_inset Formula $U:=X^{-1}(V)\subseteq\tilde{U}$ +\begin_inset Formula $U\coloneqq X^{-1}(V)\subseteq\tilde{U}$ \end_inset , restringiendo @@ -3714,7 +3714,7 @@ Demostración: . Entonces, si -\begin_inset Formula $q:=X^{-1}(p)$ +\begin_inset Formula $q\coloneqq X^{-1}(p)$ \end_inset , @@ -3779,7 +3779,7 @@ teorema \end_inset con los mismos parámetros de la primera forma fundamental, entonces -\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$ +\begin_inset Formula $\phi\coloneqq \overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$ \end_inset es una isometría. @@ -3794,7 +3794,7 @@ Demostración: \end_inset y -\begin_inset Formula $p:=X(q)$ +\begin_inset Formula $p\coloneqq X(q)$ \end_inset , @@ -4219,11 +4219,11 @@ Demostración: \end_inset lo suficientemente pequeña para que -\begin_inset Formula $\phi|_{V:=X(U)}:V\to\phi(V)$ +\begin_inset Formula $\phi|_{V\coloneqq X(U)}:V\to\phi(V)$ \end_inset sea un difeomorfismo, entonces -\begin_inset Formula $(U,\overline{X}:=\phi\circ X)$ +\begin_inset Formula $(U,\overline{X}\coloneqq \phi\circ X)$ \end_inset es una parametrización de @@ -4280,11 +4280,11 @@ Demostración: \end_inset parametrizadas por -\begin_inset Formula $X(u,v):=(u\cos v,u\sin v,\log u)$ +\begin_inset Formula $X(u,v)\coloneqq (u\cos v,u\sin v,\log u)$ \end_inset y -\begin_inset Formula $\overline{X}(u,v):=(u\cos v,u\sin v,v)$ +\begin_inset Formula $\overline{X}(u,v)\coloneqq (u\cos v,u\sin v,v)$ \end_inset , entonces @@ -4332,7 +4332,7 @@ luego y por tanto tienen igual determinante, que será la curvatura de Gauss. Sin embargo, -\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}=((x,y,z)\mapsto(x,y,e^{z}))$ +\begin_inset Formula $\phi\coloneqq \overline{X}\circ X^{-1}=((x,y,z)\mapsto(x,y,e^{z}))$ \end_inset no es una isometría. |
