aboutsummaryrefslogtreecommitdiff
path: root/gcs/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /gcs/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'gcs/n3.lyx')
-rw-r--r--gcs/n3.lyx140
1 files changed, 70 insertions, 70 deletions
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
index 4cdb4d4..8d8bd3a 100644
--- a/gcs/n3.lyx
+++ b/gcs/n3.lyx
@@ -193,7 +193,7 @@ orientable
\end_inset
, basta tomar la orientación
-\begin_inset Formula $N(p):=\xi(p)/|\xi(p)|$
+\begin_inset Formula $N(p)\coloneqq \xi(p)/|\xi(p)|$
\end_inset
.
@@ -258,11 +258,11 @@ Claramente
\end_inset
es diferenciable, y es inyectiva en
-\begin_inset Formula $U_{1}:=(0,2\pi)\times(-1,1)$
+\begin_inset Formula $U_{1}\coloneqq (0,2\pi)\times(-1,1)$
\end_inset
y en
-\begin_inset Formula $U_{2}:=(-\pi,\pi)\times(-1,1)$
+\begin_inset Formula $U_{2}\coloneqq (-\pi,\pi)\times(-1,1)$
\end_inset
.
@@ -325,7 +325,7 @@ El plano
\end_inset
admite la orientación
-\begin_inset Formula $N(p):=v/|v|$
+\begin_inset Formula $N(p)\coloneqq v/|v|$
\end_inset
.
@@ -349,7 +349,7 @@ Dados
\end_inset
, la superficie de nivel
-\begin_inset Formula $S:=f^{-1}(c)$
+\begin_inset Formula $S\coloneqq f^{-1}(c)$
\end_inset
admite la orientación
@@ -361,7 +361,7 @@ N(p):=\frac{\nabla f(p)}{|\nabla f(p)|},
\end_inset
donde
-\begin_inset Formula $\nabla f(p):=(\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p))$
+\begin_inset Formula $\nabla f(p)\coloneqq (\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p))$
\end_inset
es el
@@ -386,7 +386,7 @@ Sean
\end_inset
,
-\begin_inset Formula $\alpha:=(x,y,z):I\to S$
+\begin_inset Formula $\alpha\coloneqq (x,y,z):I\to S$
\end_inset
una curva diferenciable con
@@ -394,7 +394,7 @@ Sean
\end_inset
y
-\begin_inset Formula $v:=\alpha'(0)\in T_{p}S$
+\begin_inset Formula $v\coloneqq \alpha'(0)\in T_{p}S$
\end_inset
, para
@@ -456,7 +456,7 @@ Sean
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}+z^{2}$
+\begin_inset Formula $f(x,y,z)\coloneqq x^{2}+y^{2}+z^{2}$
\end_inset
,
@@ -519,7 +519,7 @@ Dada
\end_inset
, el grafo
-\begin_inset Formula $S:=\{(x,y,f(x,y))\}_{x,y\in U}$
+\begin_inset Formula $S\coloneqq \{(x,y,f(x,y))\}_{x,y\in U}$
\end_inset
admite la orientación
@@ -535,7 +535,7 @@ Dada la parametrización
\end_inset
con
-\begin_inset Formula $X(u,v):=(u,v,f(u,v))$
+\begin_inset Formula $X(u,v)\coloneqq (u,v,f(u,v))$
\end_inset
,
@@ -576,11 +576,11 @@ Dos cartas
compatibles
\series default
si
-\begin_inset Formula $V:=X(U)$
+\begin_inset Formula $V\coloneqq X(U)$
\end_inset
y
-\begin_inset Formula $V':=X'(U')$
+\begin_inset Formula $V'\coloneqq X'(U')$
\end_inset
son disjuntos o
@@ -635,7 +635,7 @@ status open
\end_inset
Sean
-\begin_inset Formula ${\cal A}:=\{(U_{i},X_{i})\}_{i\in I}$
+\begin_inset Formula ${\cal A}\coloneqq \{(U_{i},X_{i})\}_{i\in I}$
\end_inset
un atlas de cartas compatibles en
@@ -680,7 +680,7 @@ N(X(u,v)):=N(u,v):=\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}(u,v),
\end_inset
,
-\begin_inset Formula $\overline{N}(\overline{X}(u,v)):=\overline{N}(u,v):=\frac{\overline{X}_{u}\cap\overline{X}_{v}}{|\overline{X}_{u}\cap\overline{X}_{v}|}(u,v)$
+\begin_inset Formula $\overline{N}(\overline{X}(u,v))\coloneqq \overline{N}(u,v)\coloneqq \frac{\overline{X}_{u}\cap\overline{X}_{v}}{|\overline{X}_{u}\cap\overline{X}_{v}|}(u,v)$
\end_inset
y
@@ -802,7 +802,7 @@ Sea
\end_inset
con
-\begin_inset Formula $V:=X_{a}(U_{a})\cap X_{b}(U_{b})\neq\emptyset$
+\begin_inset Formula $V\coloneqq X_{a}(U_{a})\cap X_{b}(U_{b})\neq\emptyset$
\end_inset
, queremos ver que el determinante del cambio de coordenadas
@@ -827,11 +827,11 @@ Sea
\end_inset
, sean
-\begin_inset Formula $q_{a}:=X_{a}^{-1}(p)$
+\begin_inset Formula $q_{a}\coloneqq X_{a}^{-1}(p)$
\end_inset
y
-\begin_inset Formula $q_{b}:=X_{b}^{-1}(p)$
+\begin_inset Formula $q_{b}\coloneqq X_{b}^{-1}(p)$
\end_inset
, entonces
@@ -864,15 +864,15 @@ En adelante, cuando consideremos una parametrización
\end_inset
, escribiremos
-\begin_inset Formula $N(u,v):=N(X(u,v))$
+\begin_inset Formula $N(u,v)\coloneqq N(X(u,v))$
\end_inset
,
-\begin_inset Formula $N_{u}:=\frac{\partial(N\circ X)}{\partial u}$
+\begin_inset Formula $N_{u}\coloneqq \frac{\partial(N\circ X)}{\partial u}$
\end_inset
y
-\begin_inset Formula $N_{v}:=\frac{\partial(N\circ X)}{\partial v}$
+\begin_inset Formula $N_{v}\coloneqq \frac{\partial(N\circ X)}{\partial v}$
\end_inset
.
@@ -881,7 +881,7 @@ En adelante, cuando consideremos una parametrización
\end_inset
,
-\begin_inset Formula $f_{x_{i}}:=\frac{\partial f}{\partial x_{i}}$
+\begin_inset Formula $f_{x_{i}}\coloneqq \frac{\partial f}{\partial x_{i}}$
\end_inset
.
@@ -923,7 +923,7 @@ La imagen esférica de un plano es unipuntual.
\begin_deeper
\begin_layout Standard
Dado el plano
-\begin_inset Formula $\Pi:=p_{0}+\langle v\rangle\subseteq\mathbb{R}^{3}$
+\begin_inset Formula $\Pi\coloneqq p_{0}+\langle v\rangle\subseteq\mathbb{R}^{3}$
\end_inset
, donde podemos suponer
@@ -931,7 +931,7 @@ Dado el plano
\end_inset
unitario, la imagen de
-\begin_inset Formula $N(p):=v$
+\begin_inset Formula $N(p)\coloneqq v$
\end_inset
es
@@ -1006,7 +1006,7 @@ La imagen esférica de un cilindro es un circulo máximo de la esfera.
\begin_deeper
\begin_layout Standard
Los cilindros se obtienen por un movimiento de
-\begin_inset Formula $S_{r}:=\{x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $S_{r}\coloneqq \{x^{2}+y^{2}=r^{2}\}$
\end_inset
para algún
@@ -1031,7 +1031,7 @@ El
catenoide
\series default
,
-\begin_inset Formula $C:=\{x^{2}+y^{2}=\cosh^{2}z\}$
+\begin_inset Formula $C\coloneqq \{x^{2}+y^{2}=\cosh^{2}z\}$
\end_inset
, tiene imagen esférica
@@ -1039,7 +1039,7 @@ catenoide
\end_inset
, donde
-\begin_inset Formula $\mathsf{N}:=(0,0,1)$
+\begin_inset Formula $\mathsf{N}\coloneqq (0,0,1)$
\end_inset
es el
@@ -1047,7 +1047,7 @@ catenoide
polo norte
\series default
y
-\begin_inset Formula $\mathsf{S}:=(0,0,-1)$
+\begin_inset Formula $\mathsf{S}\coloneqq (0,0,-1)$
\end_inset
es el
@@ -1060,7 +1060,7 @@ polo sur
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}-\cosh^{2}z$
+\begin_inset Formula $f(x,y,z)\coloneqq x^{2}+y^{2}-\cosh^{2}z$
\end_inset
, como
@@ -1110,7 +1110,7 @@ Como
\end_inset
,
-\begin_inset Formula $z:=\arg\tanh(-\hat{z})$
+\begin_inset Formula $z\coloneqq \arg\tanh(-\hat{z})$
\end_inset
(que existe porque
@@ -1118,11 +1118,11 @@ Como
\end_inset
),
-\begin_inset Formula $x:=\hat{x}\cosh^{2}z$
+\begin_inset Formula $x\coloneqq \hat{x}\cosh^{2}z$
\end_inset
e
-\begin_inset Formula $y:=\hat{y}\cosh^{2}z$
+\begin_inset Formula $y\coloneqq \hat{y}\cosh^{2}z$
\end_inset
, es claro que
@@ -1197,7 +1197,7 @@ endomorfismo de Weingarten
\end_inset
a
-\begin_inset Formula $A_{p}:=-dN_{p}:T_{p}S\to T_{p}S$
+\begin_inset Formula $A_{p}\coloneqq -dN_{p}:T_{p}S\to T_{p}S$
\end_inset
.
@@ -1267,7 +1267,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $q:=(u_{0},v_{0}):=X^{-1}(p)$
+\begin_inset Formula $q\coloneqq (u_{0},v_{0})\coloneqq X^{-1}(p)$
\end_inset
, tomamos la base
@@ -1280,7 +1280,7 @@ Demostración:
.
Sea entonces
-\begin_inset Formula $\alpha(u):=X(u_{0}+u,v_{0})$
+\begin_inset Formula $\alpha(u)\coloneqq X(u_{0}+u,v_{0})$
\end_inset
,
@@ -1367,7 +1367,7 @@ Para el cilindro
\end_inset
con
-\begin_inset Formula $X(u,v):=(r\cos u,r\sin u,v)$
+\begin_inset Formula $X(u,v)\coloneqq (r\cos u,r\sin u,v)$
\end_inset
, si
@@ -1433,7 +1433,7 @@ paraboloide hiperbólico
silla de montar
\series default
,
-\begin_inset Formula $S:=\{y^{2}-x^{2}=z\}=\{(u,v,v^{2}-u^{2})\}_{(u,v)\in\mathbb{R}^{2}}$
+\begin_inset Formula $S\coloneqq \{y^{2}-x^{2}=z\}=\{(u,v,v^{2}-u^{2})\}_{(u,v)\in\mathbb{R}^{2}}$
\end_inset
,
@@ -1457,7 +1457,7 @@ silla de montar
\end_inset
dada por
-\begin_inset Formula $f(u,v):=v^{2}-u^{2}$
+\begin_inset Formula $f(u,v)\coloneqq v^{2}-u^{2}$
\end_inset
.
@@ -1516,7 +1516,7 @@ El operador forma
\end_inset
dada por
-\begin_inset Formula $\sigma_{p}(v,w):=\langle A_{p}v,w\rangle$
+\begin_inset Formula $\sigma_{p}(v,w)\coloneqq \langle A_{p}v,w\rangle$
\end_inset
, así como una forma cuadrática
@@ -1524,7 +1524,7 @@ El operador forma
\end_inset
dada por
-\begin_inset Formula ${\cal II}_{p}(v):=\sigma_{p}(v,v)=\langle A_{p}v,v\rangle$
+\begin_inset Formula ${\cal II}_{p}(v)\coloneqq \sigma_{p}(v,v)=\langle A_{p}v,v\rangle$
\end_inset
.
@@ -1659,7 +1659,7 @@ la proyección de
\begin_deeper
\begin_layout Standard
Si
-\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$
+\begin_inset Formula $\pi\coloneqq \pi_{T_{\alpha(t)}S}$
\end_inset
,
@@ -1805,7 +1805,7 @@ Sea
triedro de Darboux
\series default
es la base ortonormal positivamente orientada
-\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$
+\begin_inset Formula $(\alpha'(s),J\alpha'(s)\coloneqq \alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$
\end_inset
.
@@ -1818,7 +1818,7 @@ triedro de Darboux
\end_inset
donde
-\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$
+\begin_inset Formula $\kappa_{g}\coloneqq \langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$
\end_inset
, es la
@@ -1917,7 +1917,7 @@ curvatura normal
\end_inset
a
-\begin_inset Formula $\kappa_{n}(v,p):={\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$
+\begin_inset Formula $\kappa_{n}(v,p)\coloneqq {\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$
\end_inset
, siendo
@@ -1992,7 +1992,7 @@ Dados
\end_inset
unitario y
-\begin_inset Formula $\Pi_{v}:=\text{span}\{v,N(p)\}$
+\begin_inset Formula $\Pi_{v}\coloneqq \text{span}\{v,N(p)\}$
\end_inset
, llamamos
@@ -2074,7 +2074,7 @@ Si
\end_inset
, siendo
-\begin_inset Formula $\kappa_{n}(s):=\kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$
+\begin_inset Formula $\kappa_{n}(s)\coloneqq \kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$
\end_inset
, luego
@@ -2275,7 +2275,7 @@ El cilindro
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $C\coloneqq \{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\coloneqq (r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
\end_inset
,
@@ -2283,7 +2283,7 @@ Sean
\end_inset
y la orientación
-\begin_inset Formula $N(p):=\frac{1}{r}(x,y,0)$
+\begin_inset Formula $N(p)\coloneqq \frac{1}{r}(x,y,0)$
\end_inset
, entonces
@@ -2494,7 +2494,7 @@ curvatura de Gauss
\end_inset
es
-\begin_inset Formula $K(p):=\det A_{p}=\kappa_{1}(p)\kappa_{2}(p)$
+\begin_inset Formula $K(p)\coloneqq \det A_{p}=\kappa_{1}(p)\kappa_{2}(p)$
\end_inset
, y la
@@ -2502,7 +2502,7 @@ curvatura de Gauss
curvatura media
\series default
es
-\begin_inset Formula $H(p):=\frac{1}{2}\text{tr}A_{p}=\frac{1}{2}(\kappa_{1}(p)+\kappa_{2}(p))$
+\begin_inset Formula $H(p)\coloneqq \frac{1}{2}\text{tr}A_{p}=\frac{1}{2}(\kappa_{1}(p)+\kappa_{2}(p))$
\end_inset
.
@@ -2635,7 +2635,7 @@ status open
\begin_layout Plain Layout
La superficie es el grafo
-\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $S\coloneqq \{X(u,v)\coloneqq (u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
\end_inset
, de modo que
@@ -2772,11 +2772,11 @@ Demostración:
\end_inset
,
-\begin_inset Formula $q:=(u_{0},v_{0}):=X^{-1}(p)$
+\begin_inset Formula $q\coloneqq (u_{0},v_{0})\coloneqq X^{-1}(p)$
\end_inset
y
-\begin_inset Formula $\alpha(u):=X(u_{0}+u,v_{0})$
+\begin_inset Formula $\alpha(u)\coloneqq X(u_{0}+u,v_{0})$
\end_inset
, como
@@ -2888,7 +2888,7 @@ Si
.
Sean ahora
-\begin_inset Formula $\phi(p):=\langle p,a\rangle$
+\begin_inset Formula $\phi(p)\coloneqq \langle p,a\rangle$
\end_inset
,
@@ -2956,7 +2956,7 @@ Si
\end_inset
la función diferenciable dada por
-\begin_inset Formula $\phi(p):=p+\frac{1}{c}N(p)$
+\begin_inset Formula $\phi(p)\coloneqq p+\frac{1}{c}N(p)$
\end_inset
, para
@@ -3068,7 +3068,7 @@ y para
\end_inset
, si
-\begin_inset Formula $q:=X^{-1}(p)$
+\begin_inset Formula $q\coloneqq X^{-1}(p)$
\end_inset
y
@@ -3117,7 +3117,7 @@ Demostración:
\begin_layout Standard
Sea
-\begin_inset Formula $q:=X^{-1}(p)=(u(0),v(0))$
+\begin_inset Formula $q\coloneqq X^{-1}(p)=(u(0),v(0))$
\end_inset
, por linealidad
@@ -3535,11 +3535,11 @@ eremember
\begin_layout Standard
Existe una isometría local entre el plano
-\begin_inset Formula $\Pi:=\{z=0\}$
+\begin_inset Formula $\Pi\coloneqq \{z=0\}$
\end_inset
y el cilindro
-\begin_inset Formula $C:=\mathbb{S}^{1}\times\mathbb{R}$
+\begin_inset Formula $C\coloneqq \mathbb{S}^{1}\times\mathbb{R}$
\end_inset
, pero las superficies no son globalmente isométricas.
@@ -3571,7 +3571,7 @@ Demostración:
\end_inset
dada por
-\begin_inset Formula $\phi(x,y,0):=(\cos x,\sin x,y)$
+\begin_inset Formula $\phi(x,y,0)\coloneqq (\cos x,\sin x,y)$
\end_inset
, que es diferenciable.
@@ -3592,7 +3592,7 @@ Demostración:
\end_inset
dada por
-\begin_inset Formula $\alpha(t):=p+tv$
+\begin_inset Formula $\alpha(t)\coloneqq p+tv$
\end_inset
,
@@ -3689,7 +3689,7 @@ Demostración:
\end_inset
es un difeomorfismo, por lo que si
-\begin_inset Formula $U:=X^{-1}(V)\subseteq\tilde{U}$
+\begin_inset Formula $U\coloneqq X^{-1}(V)\subseteq\tilde{U}$
\end_inset
, restringiendo
@@ -3714,7 +3714,7 @@ Demostración:
.
Entonces, si
-\begin_inset Formula $q:=X^{-1}(p)$
+\begin_inset Formula $q\coloneqq X^{-1}(p)$
\end_inset
,
@@ -3779,7 +3779,7 @@ teorema
\end_inset
con los mismos parámetros de la primera forma fundamental, entonces
-\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$
+\begin_inset Formula $\phi\coloneqq \overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$
\end_inset
es una isometría.
@@ -3794,7 +3794,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $p:=X(q)$
+\begin_inset Formula $p\coloneqq X(q)$
\end_inset
,
@@ -4219,11 +4219,11 @@ Demostración:
\end_inset
lo suficientemente pequeña para que
-\begin_inset Formula $\phi|_{V:=X(U)}:V\to\phi(V)$
+\begin_inset Formula $\phi|_{V\coloneqq X(U)}:V\to\phi(V)$
\end_inset
sea un difeomorfismo, entonces
-\begin_inset Formula $(U,\overline{X}:=\phi\circ X)$
+\begin_inset Formula $(U,\overline{X}\coloneqq \phi\circ X)$
\end_inset
es una parametrización de
@@ -4280,11 +4280,11 @@ Demostración:
\end_inset
parametrizadas por
-\begin_inset Formula $X(u,v):=(u\cos v,u\sin v,\log u)$
+\begin_inset Formula $X(u,v)\coloneqq (u\cos v,u\sin v,\log u)$
\end_inset
y
-\begin_inset Formula $\overline{X}(u,v):=(u\cos v,u\sin v,v)$
+\begin_inset Formula $\overline{X}(u,v)\coloneqq (u\cos v,u\sin v,v)$
\end_inset
, entonces
@@ -4332,7 +4332,7 @@ luego
y por tanto tienen igual determinante, que será la curvatura de Gauss.
Sin embargo,
-\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}=((x,y,z)\mapsto(x,y,e^{z}))$
+\begin_inset Formula $\phi\coloneqq \overline{X}\circ X^{-1}=((x,y,z)\mapsto(x,y,e^{z}))$
\end_inset
no es una isometría.