diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-14 13:49:43 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-14 13:49:43 +0100 |
| commit | eddb050508fe8a0cf8c88189807b8c1131c48d90 (patch) | |
| tree | 24330e54c5048a47e034e2333c638c325cf65451 /gcs | |
| parent | 6818cf1fa4b18ba9a8082ed5125d55cea8083547 (diff) | |
gcs/a3d
Diffstat (limited to 'gcs')
| -rw-r--r-- | gcs/n3.lyx | 157 |
1 files changed, 157 insertions, 0 deletions
@@ -1894,5 +1894,162 @@ curvatura normal . \end_layout +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Un plano tiene curvatura normal 0 en todo punto y dirección. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $A_{p}=0$ +\end_inset + +, +\begin_inset Formula $\kappa_{n}(v,p)={\cal II}_{p}(v)=\langle A_{p}v,v\rangle=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{S}^{2}(r)$ +\end_inset + + tiene curvatura normal constante +\begin_inset Formula $-\frac{1}{r}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $N(p)=\frac{1}{r}p$ +\end_inset + +, +\begin_inset Formula $\kappa_{n}(v,p)=\langle A_{p}v,v\rangle=\langle-\frac{1}{r}v,v\rangle=-\frac{1}{r}|v|^{2}=-\frac{1}{r}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dados +\begin_inset Formula $p\in S$ +\end_inset + +, +\begin_inset Formula $v\in T_{p}S$ +\end_inset + + unitario y +\begin_inset Formula $\Pi_{v}:=\text{span}\{v,N(p)\}$ +\end_inset + +, llamamos +\series bold +sección normal +\series default + +\begin_inset Formula $C_{v}$ +\end_inset + + a la curva regular plana resultante de intersecar +\begin_inset Formula $S$ +\end_inset + + con +\begin_inset Formula $\Pi_{v}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una parametrización por arco de +\begin_inset Formula $C_{v}$ +\end_inset + + con +\begin_inset Formula $\alpha(0)=p$ +\end_inset + + y +\begin_inset Formula $\alpha'(0)=v$ +\end_inset + +, entonces +\begin_inset Formula $\kappa_{n}(v,p)=\kappa(0)$ +\end_inset + +, siendo +\begin_inset Formula $\kappa$ +\end_inset + + la curvatura de +\begin_inset Formula $\alpha$ +\end_inset + + como curva plana. + En efecto, como +\begin_inset Formula $v\in T_{p}S$ +\end_inset + +, +\begin_inset Formula $v\bot N(p)$ +\end_inset + + y el vector normal es +\begin_inset Formula $\mathbf{n}=J_{\Pi_{v}}v=\pm N(p)$ +\end_inset + +, y como todavía no hemos orientado el plano podemos tomar +\begin_inset Formula $\mathbf{n}=N(p)$ +\end_inset + +, pero entonces +\begin_inset Formula $\kappa_{n}(v,p)=\langle\alpha''(0),N(p)\rangle=\langle\kappa(0)\mathbf{n}(0),N(p)\rangle=\kappa(0)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + es una curva parametrizada por arco, +\begin_inset Formula $\alpha''(s)=\kappa_{g}(s)J\alpha'(s)+\kappa_{n}(s)N(\alpha(s))$ +\end_inset + +, siendo +\begin_inset Formula $\kappa_{n}(s):=\kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$ +\end_inset + +, luego +\begin_inset Formula +\[ +\kappa(s)^{2}=\kappa_{g}(s)^{2}+\kappa_{n}(s)^{2}. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Curvaturas principales +\end_layout + \end_body \end_document |
