diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ggs/n9.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'ggs/n9.lyx')
| -rw-r--r-- | ggs/n9.lyx | 20 |
1 files changed, 10 insertions, 10 deletions
@@ -161,7 +161,7 @@ Demostración: \end_inset dada por -\begin_inset Formula $h(t):=(f(t)-\cos\theta(t))^{2}+(g(t)-\sin\theta(t))^{2}$ +\begin_inset Formula $h(t)\coloneqq (f(t)-\cos\theta(t))^{2}+(g(t)-\sin\theta(t))^{2}$ \end_inset , entonces @@ -345,7 +345,7 @@ Teorema de Liouville: \end_inset , -\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $\tilde{\alpha}\coloneqq (u,v)\coloneqq X^{-1}\circ\alpha:I\to U$ \end_inset , @@ -373,7 +373,7 @@ e_{1}(s):=\frac{1}{\sqrt{E(\tilde{\alpha}(s))}}X_{u}(\tilde{\alpha}(s)), \end_inset , -\begin_inset Formula $\alpha_{v}(u):=\beta_{u}(v):=X(u,v)$ +\begin_inset Formula $\alpha_{v}(u)\coloneqq \beta_{u}(v)\coloneqq X(u,v)$ \end_inset , @@ -425,7 +425,7 @@ e_{1}(s) & =\frac{X_{u}}{\Vert X_{u}\Vert}(\tilde{\alpha}(s)). \end_inset Entonces -\begin_inset Formula $e_{2}(s):=Je_{1}(s)$ +\begin_inset Formula $e_{2}(s)\coloneqq Je_{1}(s)$ \end_inset es también tangente y unitario y ortogonal a @@ -451,7 +451,7 @@ Con esto, \end_inset luego si -\begin_inset Formula $\omega:=\langle e_{1}',e_{2}\rangle=-\langle e_{1},e_{2}'\rangle$ +\begin_inset Formula $\omega\coloneqq \langle e_{1}',e_{2}\rangle=-\langle e_{1},e_{2}'\rangle$ \end_inset @@ -709,7 +709,7 @@ velocidad que llega \end_inset es -\begin_inset Formula $\alpha'_{-}(\ell):=\lim_{s\to\ell^{-}}\alpha'(s)$ +\begin_inset Formula $\alpha'_{-}(\ell)\coloneqq \lim_{s\to\ell^{-}}\alpha'(s)$ \end_inset , y la @@ -814,11 +814,11 @@ Teorema de rotación de las tangentes: \end_inset el ángulo de rotación de la velocidad de -\begin_inset Formula $\alpha_{i}:=\alpha|_{[s_{i-1},s_{i}]}$ +\begin_inset Formula $\alpha_{i}\coloneqq \alpha|_{[s_{i-1},s_{i}]}$ \end_inset respecto a -\begin_inset Formula $e_{1}(s):=X_{u}(X^{-1}(\alpha(s)))/\sqrt{E(s)}$ +\begin_inset Formula $e_{1}(s)\coloneqq X_{u}(X^{-1}(\alpha(s)))/\sqrt{E(s)}$ \end_inset , entonces @@ -842,7 +842,7 @@ Teorema de Gauss-Bonnet Teorema de Green: \series default Sea -\begin_inset Formula $\tilde{\alpha}:=(u,v):[0,\ell]\to\mathbb{R}^{2}$ +\begin_inset Formula $\tilde{\alpha}\coloneqq (u,v):[0,\ell]\to\mathbb{R}^{2}$ \end_inset una parametrización positivamente orientada de la frontera de un @@ -987,7 +987,7 @@ característica de Euler \end_inset es -\begin_inset Formula $\chi(T):=i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$ +\begin_inset Formula $\chi(T)\coloneqq i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$ \end_inset . |
