diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-05 23:23:55 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-05 23:26:13 +0200 |
| commit | 59ee0dff8cc3195383aaf83d9972f67588b852c0 (patch) | |
| tree | 60503c3de056339c1f11089bb5943e9ccd88ce1b /ggs | |
| parent | f58a4ff2262348e9690c28bf6464de192a9597e4 (diff) | |
GGS tema 4
Diffstat (limited to 'ggs')
| -rw-r--r-- | ggs/n.lyx | 14 | ||||
| -rw-r--r-- | ggs/n3.lyx | 21 | ||||
| -rw-r--r-- | ggs/n4.lyx | 968 |
3 files changed, 997 insertions, 6 deletions
@@ -189,5 +189,19 @@ filename "n3.lyx" \end_layout +\begin_layout Chapter +Distancia intrínseca en una superficie +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + \end_body \end_document @@ -1194,11 +1194,15 @@ Sean \end_inset Entonces -\begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}+2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}$ +\begin_inset Formula +\begin{align*} +\Vert\alpha'(t)\Vert^{2}= & r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}\\ + & +2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}. +\end{align*} + \end_inset -. - Como +Como \begin_inset Formula $V(t)$ \end_inset @@ -1211,10 +1215,14 @@ Entonces \end_inset , luego -\begin_inset Formula $\langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0$ +\begin_inset Formula +\[ +\langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0 +\] + \end_inset - y +y \begin_inset Formula \begin{multline*} \langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle=\\ @@ -1881,7 +1889,8 @@ queda pero \begin_inset Formula \begin{multline*} -\lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R}, +\lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\\ +=\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R}, \end{multline*} \end_inset diff --git a/ggs/n4.lyx b/ggs/n4.lyx new file mode 100644 index 0000000..a8a29a2 --- /dev/null +++ b/ggs/n4.lyx @@ -0,0 +1,968 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dada una superficie regular +\begin_inset Formula $S$ +\end_inset + +, un +\series bold +segmento de curva diferenciable +\series default + en +\begin_inset Formula $S$ +\end_inset + + es una función +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + para la que existen +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y una curva diferenciable (no necesariamente regular) +\begin_inset Formula $\beta:(a-\varepsilon,b+\varepsilon)\to S$ +\end_inset + + de modo que +\begin_inset Formula $\beta|_{[a,b]}=\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +segmento de curva diferenciable a trozos +\series default + en +\begin_inset Formula $S$ +\end_inset + + es una función continua +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + para la que existe una partición +\begin_inset Formula $a=t_{0}<\dots<t_{k}=b$ +\end_inset + + tal que, para +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +, +\begin_inset Formula $\alpha_{i}:=\alpha|_{[t_{i-1},t_{i}]}$ +\end_inset + + es un segmento de curva diferenciable. + Entonces, para +\begin_inset Formula $i\in\{1,\dots,k-1\}$ +\end_inset + +, llamamos +\begin_inset Formula $\alpha'_{-}(t_{i})=\lim_{t\to t_{i}^{-}}\alpha'(t)=\alpha'_{i}(t_{i})$ +\end_inset + + y +\begin_inset Formula $\alpha'_{+}(t_{i})=\lim_{t\to t_{i}^{+}}\alpha'(t)=\alpha'_{i+1}(t_{i})$ +\end_inset + +. + Entonces +\begin_inset Formula $\alpha(t_{i})$ +\end_inset + + es un +\series bold +vértice +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + + si +\begin_inset Formula $\alpha'_{-}(t_{i})\neq\alpha'_{+}(t_{i})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Distancia +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S$ +\end_inset + + es una superficie regular conexa, dados +\begin_inset Formula $p,q\in S$ +\end_inset + +, llamamos +\begin_inset Formula $\Omega(p,q)$ +\end_inset + + al conjunto de segmentos de curvas diferenciables a trozos +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + con +\begin_inset Formula $\alpha(a)=p$ +\end_inset + + y +\begin_inset Formula $\alpha(b)=q$ +\end_inset + +, que no es vacío, y llamamos +\series bold +distancia intrínseca +\series default + en +\begin_inset Formula $S$ +\end_inset + + a la +\begin_inset Formula $d:S\times S\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +d(p,q):=\inf_{\alpha\in\Omega(p,q)}L(\alpha), +\] + +\end_inset + +siendo +\begin_inset Formula $L(\alpha)$ +\end_inset + + la longitud de +\begin_inset Formula $\alpha$ +\end_inset + +, que es una distancia. + Además, +\begin_inset Formula $\Vert p-q\Vert\leq d(p,q)$ +\end_inset + + para +\begin_inset Formula $p,q\in S$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Primero hay que ver que está bien definida, es decir, que para +\begin_inset Formula $p,q\in S$ +\end_inset + +, +\begin_inset Formula $\{L(\alpha)\}_{\alpha\in\Omega(p,q)}$ +\end_inset + + tiene ínfimo. + +\end_layout + +\begin_layout Standard +Primero vemos que +\begin_inset Formula $A:=\{q\in S:\Omega(p,q)\neq\emptyset\}=S$ +\end_inset + + viendo que es abierto, cerrado y no vacío. + La curva constante en +\begin_inset Formula $p$ +\end_inset + + está en +\begin_inset Formula $\Omega(p,p)$ +\end_inset + +, luego +\begin_inset Formula $p\in A\neq\emptyset$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Para ver que +\begin_inset Formula $A$ +\end_inset + + es abierto, sea +\begin_inset Formula $q\in A$ +\end_inset + +, existe +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $D(q,\varepsilon)$ +\end_inset + + es un entorno normal de +\begin_inset Formula $q$ +\end_inset + +, de modo que si +\begin_inset Formula $\alpha\in\Omega(p,q)$ +\end_inset + +, para +\begin_inset Formula $q'\in D(q,\varepsilon)$ +\end_inset + +, sea +\begin_inset Formula $\gamma_{q'}$ +\end_inset + + el segmento de geodésica que une +\begin_inset Formula $q$ +\end_inset + + con +\begin_inset Formula $q'$ +\end_inset + +, entonces +\begin_inset Formula $\alpha\wedge\gamma_{q'}\in\Omega(p,q')$ +\end_inset + +, +\begin_inset Formula $q'\in A$ +\end_inset + + y, como +\begin_inset Formula $q'$ +\end_inset + + es arbitrario, +\begin_inset Formula $D(q,\varepsilon)\subseteq A$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Para ver que +\begin_inset Formula $A$ +\end_inset + + es cerrado, vemos que +\begin_inset Formula $A^{\complement}=S\setminus A$ +\end_inset + + es abierto. + Sea +\begin_inset Formula $q\in A^{\complement}$ +\end_inset + + y +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $D(q,\varepsilon)$ +\end_inset + + es un entorno normal de +\begin_inset Formula $q$ +\end_inset + +, entonces +\begin_inset Formula $D(q,\varepsilon)\subseteq A^{\complement}$ +\end_inset + +, pues si hubiera +\begin_inset Formula $q'\in D(q,\varepsilon)\cap A$ +\end_inset + +, sea +\begin_inset Formula $\beta\in\Omega(p,q')$ +\end_inset + + y +\begin_inset Formula $\gamma_{q'}$ +\end_inset + + el segmento de geodésica que une +\begin_inset Formula $q$ +\end_inset + + con +\begin_inset Formula $q'$ +\end_inset + +, entonces +\begin_inset Formula $\beta\wedge\overline{\gamma_{q'}}\in\Omega(p,q)\#$ +\end_inset + +. + Como +\begin_inset Formula $A$ +\end_inset + + es abierto, cerrado y no vacío en el conexo +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $A=S$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Con esto, como +\begin_inset Formula $\Omega(p,q)\neq\emptyset$ +\end_inset + + y +\begin_inset Formula $\{L(\alpha)\}_{\alpha\in\Omega(p,q)}$ +\end_inset + + está acotado inferiormente por 0, el ínfimo existe. + Queda ver que +\begin_inset Formula $d$ +\end_inset + + es una distancia. + Sean +\begin_inset Formula $p,q,r\in S$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(p,q)\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(p,q)=0\iff p=q$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Por la desigualdad de Cauchy-Schwarz, sean +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + en +\begin_inset Formula $\Omega(p,q)$ +\end_inset + + y +\begin_inset Formula $v:=\frac{\overrightarrow{q-p}}{\Vert\overrightarrow{q-p}\Vert}$ +\end_inset + +, entonces +\begin_inset Formula +\begin{align*} +\Vert p-q\Vert & =\langle q-p,v\rangle=\langle q,v\rangle-\langle p,v\rangle=\langle\alpha(b),v\rangle-\langle\alpha(a),v\rangle=\\ + & =\int_{a}^{b}\langle\alpha'(t),v\rangle dt\leq\int_{a}^{b}|\langle\alpha'(t),v\rangle|dt=\int_{a}^{b}\Vert\alpha'(t)\Vert dt=L(\alpha), +\end{align*} + +\end_inset + +y tomando el ínfimo, +\begin_inset Formula $\Vert p-q\Vert\leq\inf_{\alpha\in\Omega(p,q)}L(\alpha)=d(p,q)=0$ +\end_inset + +, luego +\begin_inset Formula $p=q$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Basta tomar la curva constante, de longitud 0. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $d(p,q)=d(q,p)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\Omega(q,p)=\{\overline{\alpha}\}_{\alpha\in\Omega(p,q)}$ +\end_inset + +, pero +\begin_inset Formula $L(\overline{\alpha})=L(\alpha)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $d(p,q)\leq d(p,r)+d(r,q)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $\alpha\in\Omega(p,r)$ +\end_inset + + y +\begin_inset Formula $\beta\in\Omega(r,q)$ +\end_inset + +, +\begin_inset Formula $\alpha\wedge\beta\in\Omega(p,q)$ +\end_inset + +, luego +\begin_inset Formula +\[ +d(p,q)=\inf_{\gamma\in\Omega(p,q)}L(\gamma)\leq L(\alpha\wedge\beta)=L(\alpha)+L(\beta). +\] + +\end_inset + +Entonces +\begin_inset Formula $d(p,q)-L(\beta)\leq L(\alpha)$ +\end_inset + + y tomando el ínfimo +\begin_inset Formula $d(p,q)-L(\beta)\leq d(p,r)$ +\end_inset + +, luego +\begin_inset Formula $d(p,q)-d(p,r)\leq L(\beta)$ +\end_inset + + y tomando el ínfimo +\begin_inset Formula $d(p,q)-d(p,r)\leq d(r,q)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Propiedades +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular conexa y +\begin_inset Formula $p\in S$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + + con +\begin_inset Formula ${\cal D}(0_{p},r)\subseteq{\cal D}_{p}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $D(p,r)\subseteq B_{d}(p,r)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $q\in D(p,r)=\exp_{p}({\cal D}(0_{p},r))$ +\end_inset + +, existe +\begin_inset Formula $v\in{\cal D}(0_{p},r)$ +\end_inset + +, no necesariamente único, con +\begin_inset Formula $q=\exp_{p}(v)$ +\end_inset + +. + Sea entonces +\begin_inset Formula $\gamma:[0,1]\to D(p,r)$ +\end_inset + + el segmento de geodésica radial de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $q$ +\end_inset + +, como +\begin_inset Formula $\gamma\in\Omega(p,q)$ +\end_inset + +, +\begin_inset Formula +\[ +d(p,q)\leq L(\gamma)=\int_{0}^{1}\Vert\gamma'(t)\Vert dt=\Vert\gamma'(0)\Vert=\Vert v\Vert<r, +\] + +\end_inset + +luego +\begin_inset Formula $q\in B_{d}(p,r)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que, para +\begin_inset Formula $r\in(0,\delta)$ +\end_inset + +, +\begin_inset Formula $D(p,r)$ +\end_inset + + es un entorno normal de +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Existe un entorno +\begin_inset Formula ${\cal U}$ +\end_inset + + estrellado respecto al 0 con +\begin_inset Formula $\exp_{p}:{\cal U}\to(V:=\exp_{p}({\cal U}))$ +\end_inset + + difeomorfismo, luego existe +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula ${\cal D}(0,\delta)\subseteq{\cal U}$ +\end_inset + + y, para +\begin_inset Formula $r<\delta$ +\end_inset + +, +\begin_inset Formula ${\cal D}(0,r)\subseteq{\cal U}$ +\end_inset + + y +\begin_inset Formula $\exp_{p}:{\cal D}(0,r)\to D(0,r)$ +\end_inset + + es un difeomorfismo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $D(p,r)$ +\end_inset + + es normal, +\begin_inset Formula $D(p,r)=B_{d}(p,r)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Queremos ver que +\begin_inset Formula $B_{d}(p,r)\subseteq D(p,r)$ +\end_inset + +. + Supongamos que esto no ocurre, con lo que existe +\begin_inset Formula $q\in B_{d}(p,r)\setminus D(p,r)$ +\end_inset + +. + Entonces, para +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + en +\begin_inset Formula $\Omega(p,q)$ +\end_inset + + y +\begin_inset Formula $r^{*}\in(0,r)$ +\end_inset + +, como +\begin_inset Formula $q\notin D(p,r^{*})$ +\end_inset + +, existe +\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]:\alpha(t)\notin D(p,r^{*})\}$ +\end_inset + +, pero +\begin_inset Formula $t\neq a$ +\end_inset + +, por tanto +\begin_inset Formula $t>a$ +\end_inset + +, existe una sucesión creciente +\begin_inset Formula $\{t_{n}\}_{n}\subseteq(a,t)$ +\end_inset + + que tiende a +\begin_inset Formula $t$ +\end_inset + + y, por continuidad, +\begin_inset Formula +\[ +p^{*}:=\alpha(t^{*})=\lim_{n}\alpha(t_{n})\in\overline{D(p,r^{*})}, +\] + +\end_inset + +de modo que +\begin_inset Formula $p^{*}\in\partial D(p,r^{*})=S(p,r^{*})$ +\end_inset + +. + Entonces existe +\begin_inset Formula $v^{*}\in{\cal S}(0,r)$ +\end_inset + + con +\begin_inset Formula $p^{*}=\exp_{p}(v^{*})$ +\end_inset + + y +\begin_inset Formula $\Vert v^{*}\Vert=r^{*}$ +\end_inset + +. + Con esto, +\begin_inset Formula $L(\alpha)\geq L(\alpha|_{[a,t^{*}]})\geq L(\gamma_{p^{*}})=\Vert v^{*}\Vert=r^{*}$ +\end_inset + +, pero como +\begin_inset Formula $\alpha\in\Omega(p,q)$ +\end_inset + + es arbitrario, +\begin_inset Formula $d(p,q)\geq r^{*}$ +\end_inset + +, y como +\begin_inset Formula $r^{*}\in(0,r)$ +\end_inset + + es arbitrario, +\begin_inset Formula $d(p,q)\geq r\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +La topología inducida en +\begin_inset Formula $S$ +\end_inset + + por la usual en +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + coincide con la inducida por la distancia intrínseca en +\begin_inset Formula $S$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula ${\cal T}_{S}$ +\end_inset + + y +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + respectivamente estas topologías: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $A\in{\cal T}_{S}$ +\end_inset + + y +\begin_inset Formula $p\in A$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $B_{d_{\mathbb{R}^{3}}}(p,\delta)\cap S\subseteq A$ +\end_inset + +, pero para +\begin_inset Formula $q\in B_{d}(p,\delta)$ +\end_inset + + es +\begin_inset Formula $\Vert p-q\Vert\leq d(p,q)<\delta$ +\end_inset + + y por tanto +\begin_inset Formula $q\in B_{d_{\mathbb{R}^{3}}}(p,\delta)\cap S\subseteq A$ +\end_inset + +, luego +\begin_inset Formula $B_{d}(p,\delta)\subseteq A$ +\end_inset + + y, como +\begin_inset Formula $p$ +\end_inset + + es arbitrario, +\begin_inset Formula $A\in{\cal T}_{d}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $A\in{\cal T}_{d}$ +\end_inset + + y +\begin_inset Formula $p\in A$ +\end_inset + +, existe +\begin_inset Formula $\delta_{p}>0$ +\end_inset + + con +\begin_inset Formula $B_{d}(p,\delta_{p})\subseteq A$ +\end_inset + +, y haciendo +\begin_inset Formula $\delta$ +\end_inset + + suficientemente pequeño, +\begin_inset Formula $D(p,\delta_{p})$ +\end_inset + + es normal e igual a +\begin_inset Formula $B_{d}(p,\delta_{p})$ +\end_inset + +, pero +\begin_inset Formula $D(p,\delta_{p})$ +\end_inset + + es abierto en +\begin_inset Formula ${\cal T}_{S}$ +\end_inset + + ya que +\begin_inset Formula $\exp_{p}:{\cal D}(0_{p},\delta_{p})\to D(p,\delta_{p})$ +\end_inset + + es un difeomorfismo, de modo que +\begin_inset Formula $A=\bigcup_{p\in A}D(p,\delta_{p})\in{\cal T}_{S}$ +\end_inset + + por ser unión de abiertos. +\end_layout + +\end_body +\end_document |
