diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /graf/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'graf/n3.lyx')
| -rw-r--r-- | graf/n3.lyx | 32 |
1 files changed, 17 insertions, 15 deletions
diff --git a/graf/n3.lyx b/graf/n3.lyx index ed819e4..b2cfb39 100644 --- a/graf/n3.lyx +++ b/graf/n3.lyx @@ -155,11 +155,11 @@ teorema . Sean -\begin_inset Formula $u_{0}:=v_{0}:=u$ +\begin_inset Formula $u_{0}\coloneqq v_{0}\coloneqq u$ \end_inset , -\begin_inset Formula $u_{p}:=u_{q}:=v$ +\begin_inset Formula $u_{p}\coloneqq u_{q}\coloneqq v$ \end_inset e @@ -228,7 +228,7 @@ teorema \end_inset , sea -\begin_inset Formula $e:=(u,v)\in E$ +\begin_inset Formula $e\coloneqq (u,v)\in E$ \end_inset , @@ -447,7 +447,7 @@ teorema \end_inset el ciclo que se forma al añadir -\begin_inset Formula $e:=(u,v)$ +\begin_inset Formula $e\coloneqq (u,v)$ \end_inset a @@ -753,7 +753,7 @@ La altura de status open \begin_layout Plain Layout -\begin_inset Formula $\lg x:=\log_{2}x$ +\begin_inset Formula $\lg x\coloneqq \log_{2}x$ \end_inset . @@ -792,15 +792,15 @@ Todos los niveles hasta el \end_inset se alcanza en -\begin_inset Formula $T':=(V',E')$ +\begin_inset Formula $T'\coloneqq (V',E')$ \end_inset dado por -\begin_inset Formula $V':=\{b_{0},a_{1},b_{1},\dots,a_{h},b_{h}\}$ +\begin_inset Formula $V'\coloneqq \{b_{0},a_{1},b_{1},\dots,a_{h},b_{h}\}$ \end_inset y -\begin_inset Formula $E':=\{(a_{k},b_{k-1}),(b_{k},b_{k-1})\}_{k\in\{1,\dots,h\}}$ +\begin_inset Formula $E'\coloneqq \{(a_{k},b_{k-1}),(b_{k},b_{k-1})\}_{k\in\{1,\dots,h\}}$ \end_inset . @@ -833,15 +833,15 @@ n\leq2^{h+1}-1\iff n+1\leq2^{h+1}\iff\lg(n+1)-1\leq h\overset{h\in\mathbb{Z}}{\i \end_inset La igualdad se alcanza en -\begin_inset Formula $T':=(V',E')$ +\begin_inset Formula $T'\coloneqq (V',E')$ \end_inset con -\begin_inset Formula $V':=\{1,\dots,n\}$ +\begin_inset Formula $V'\coloneqq \{1,\dots,n\}$ \end_inset y -\begin_inset Formula $E':=\{(k,\lfloor\frac{k}{2}\rfloor)\}_{k\in\{2,\dots,n\}}$ +\begin_inset Formula $E'\coloneqq \{(k,\lfloor\frac{k}{2}\rfloor)\}_{k\in\{2,\dots,n\}}$ \end_inset . @@ -1025,7 +1025,7 @@ mínimo \end_inset tales que -\begin_inset Formula $a:=(u,v)\in E$ +\begin_inset Formula $a\coloneqq (u,v)\in E$ \end_inset , si @@ -1095,7 +1095,7 @@ mínimo \end_inset y -\begin_inset Formula $S:=(V,E_{0}\cup\{e\})$ +\begin_inset Formula $S\coloneqq (V,E_{0}\cup\{e\})$ \end_inset , como @@ -1115,7 +1115,7 @@ mínimo \end_inset y -\begin_inset Formula $T_{1}:=(V,E_{1}:=E_{0}\cup\{e\}\setminus\{a\})$ +\begin_inset Formula $T_{1}\coloneqq (V,E_{1}\coloneqq E_{0}\cup\{e\}\setminus\{a\})$ \end_inset tiene menor o igual (en concreto igual) peso que @@ -1371,7 +1371,9 @@ Mientras{$|V_1|<|V|$}{ \backslash in V_1$ y $v_2 \backslash -in V_2$ con $e:=(v_1,v_2) +in V_2$ con $e +\backslash +coloneqq (v_1,v_2) \backslash in E$ de peso mínimo \backslash |
