aboutsummaryrefslogtreecommitdiff
path: root/graf/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /graf/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'graf/n3.lyx')
-rw-r--r--graf/n3.lyx32
1 files changed, 17 insertions, 15 deletions
diff --git a/graf/n3.lyx b/graf/n3.lyx
index ed819e4..b2cfb39 100644
--- a/graf/n3.lyx
+++ b/graf/n3.lyx
@@ -155,11 +155,11 @@ teorema
.
Sean
-\begin_inset Formula $u_{0}:=v_{0}:=u$
+\begin_inset Formula $u_{0}\coloneqq v_{0}\coloneqq u$
\end_inset
,
-\begin_inset Formula $u_{p}:=u_{q}:=v$
+\begin_inset Formula $u_{p}\coloneqq u_{q}\coloneqq v$
\end_inset
e
@@ -228,7 +228,7 @@ teorema
\end_inset
, sea
-\begin_inset Formula $e:=(u,v)\in E$
+\begin_inset Formula $e\coloneqq (u,v)\in E$
\end_inset
,
@@ -447,7 +447,7 @@ teorema
\end_inset
el ciclo que se forma al añadir
-\begin_inset Formula $e:=(u,v)$
+\begin_inset Formula $e\coloneqq (u,v)$
\end_inset
a
@@ -753,7 +753,7 @@ La altura de
status open
\begin_layout Plain Layout
-\begin_inset Formula $\lg x:=\log_{2}x$
+\begin_inset Formula $\lg x\coloneqq \log_{2}x$
\end_inset
.
@@ -792,15 +792,15 @@ Todos los niveles hasta el
\end_inset
se alcanza en
-\begin_inset Formula $T':=(V',E')$
+\begin_inset Formula $T'\coloneqq (V',E')$
\end_inset
dado por
-\begin_inset Formula $V':=\{b_{0},a_{1},b_{1},\dots,a_{h},b_{h}\}$
+\begin_inset Formula $V'\coloneqq \{b_{0},a_{1},b_{1},\dots,a_{h},b_{h}\}$
\end_inset
y
-\begin_inset Formula $E':=\{(a_{k},b_{k-1}),(b_{k},b_{k-1})\}_{k\in\{1,\dots,h\}}$
+\begin_inset Formula $E'\coloneqq \{(a_{k},b_{k-1}),(b_{k},b_{k-1})\}_{k\in\{1,\dots,h\}}$
\end_inset
.
@@ -833,15 +833,15 @@ n\leq2^{h+1}-1\iff n+1\leq2^{h+1}\iff\lg(n+1)-1\leq h\overset{h\in\mathbb{Z}}{\i
\end_inset
La igualdad se alcanza en
-\begin_inset Formula $T':=(V',E')$
+\begin_inset Formula $T'\coloneqq (V',E')$
\end_inset
con
-\begin_inset Formula $V':=\{1,\dots,n\}$
+\begin_inset Formula $V'\coloneqq \{1,\dots,n\}$
\end_inset
y
-\begin_inset Formula $E':=\{(k,\lfloor\frac{k}{2}\rfloor)\}_{k\in\{2,\dots,n\}}$
+\begin_inset Formula $E'\coloneqq \{(k,\lfloor\frac{k}{2}\rfloor)\}_{k\in\{2,\dots,n\}}$
\end_inset
.
@@ -1025,7 +1025,7 @@ mínimo
\end_inset
tales que
-\begin_inset Formula $a:=(u,v)\in E$
+\begin_inset Formula $a\coloneqq (u,v)\in E$
\end_inset
, si
@@ -1095,7 +1095,7 @@ mínimo
\end_inset
y
-\begin_inset Formula $S:=(V,E_{0}\cup\{e\})$
+\begin_inset Formula $S\coloneqq (V,E_{0}\cup\{e\})$
\end_inset
, como
@@ -1115,7 +1115,7 @@ mínimo
\end_inset
y
-\begin_inset Formula $T_{1}:=(V,E_{1}:=E_{0}\cup\{e\}\setminus\{a\})$
+\begin_inset Formula $T_{1}\coloneqq (V,E_{1}\coloneqq E_{0}\cup\{e\}\setminus\{a\})$
\end_inset
tiene menor o igual (en concreto igual) peso que
@@ -1371,7 +1371,9 @@ Mientras{$|V_1|<|V|$}{
\backslash
in V_1$ y $v_2
\backslash
-in V_2$ con $e:=(v_1,v_2)
+in V_2$ con $e
+\backslash
+coloneqq (v_1,v_2)
\backslash
in E$ de peso mínimo
\backslash