aboutsummaryrefslogtreecommitdiff
path: root/si/n3.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /si/n3.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'si/n3.lyx')
-rw-r--r--si/n3.lyx16
1 files changed, 9 insertions, 7 deletions
diff --git a/si/n3.lyx b/si/n3.lyx
index ba20d3d..684d415 100644
--- a/si/n3.lyx
+++ b/si/n3.lyx
@@ -665,7 +665,7 @@ f(R)=\omega(R)+h(\text{final}(R))\leq\omega(R)+\min\omega({\cal P}_{\text{final}
por lo que siempre se procesa antes una solución óptima que una no óptima.
Sea ahora
-\begin_inset Formula $p:=\inf\omega(A)>0$
+\begin_inset Formula $p\coloneqq \inf\omega(A)>0$
\end_inset
, todo
@@ -784,7 +784,7 @@ Si
es monótona creciente.
En efecto, sea
-\begin_inset Formula $P_{i}:=v_{0}\cdots v_{i}$
+\begin_inset Formula $P_{i}\coloneqq v_{0}\cdots v_{i}$
\end_inset
, para
@@ -1008,7 +1008,9 @@ lSSi{$
\backslash
text{
\backslash
-rm fallo}(t):=r$}{$f_b
+rm fallo}(t)
+\backslash
+coloneqq r$}{$f_b
\backslash
gets t$}
\end_layout
@@ -1253,7 +1255,7 @@ Entonces, si
\end_inset
, dado un
-\begin_inset Formula $c:=(s,\{v_{1},\dots,v_{n}\})\in A$
+\begin_inset Formula $c\coloneqq (s,\{v_{1},\dots,v_{n}\})\in A$
\end_inset
tal que todos los
@@ -1269,7 +1271,7 @@ grafo solución
\end_inset
es
-\begin_inset Formula $(V',A'):=(\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$
+\begin_inset Formula $(V',A')\coloneqq (\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$
\end_inset
, donde
@@ -1281,7 +1283,7 @@ grafo solución
\end_inset
, y el coste de la solución es
-\begin_inset Formula $\omega(V',A'):=\omega(c)+\sum_{i}\omega(V_{i},A_{i})$
+\begin_inset Formula $\omega(V',A')\coloneqq \omega(c)+\sum_{i}\omega(V_{i},A_{i})$
\end_inset
.
@@ -2430,7 +2432,7 @@ Dadas las heurísticas
\end_inset
para un mismo problema,
-\begin_inset Formula $h(v):=\max_{i=1}^{m}h_{i}$
+\begin_inset Formula $h(v)\coloneqq \max_{i=1}^{m}h_{i}$
\end_inset
es una heurística que domina a todas las