diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /tem/n2.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'tem/n2.lyx')
| -rw-r--r-- | tem/n2.lyx | 1269 |
1 files changed, 1269 insertions, 0 deletions
diff --git a/tem/n2.lyx b/tem/n2.lyx new file mode 100644 index 0000000..02c4d59 --- /dev/null +++ b/tem/n2.lyx @@ -0,0 +1,1269 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Clausura +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, la +\series bold +clausura +\series default + o +\series bold +adherencia +\series default + de +\begin_inset Formula $S$ +\end_inset + + es el menor cerrado que contiene a +\begin_inset Formula $S$ +\end_inset + +, es decir, la intersección de todos los cerrados que lo contienen, y se + denota +\begin_inset Formula +\[ +\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $p\in X$ +\end_inset + +, +\begin_inset Formula $p\in\overline{S}\iff\forall V\in{\cal E}(p),V\cap S\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in\overline{S}$ +\end_inset + + y supongamos que existe +\begin_inset Formula $V\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $V\cap S=\emptyset$ +\end_inset + +. + Entonces +\begin_inset Formula $S\subseteq X\backslash V\in{\cal C_{T}}$ +\end_inset + +, luego +\begin_inset Formula $p\in\overline{S}\subseteq X\backslash V$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in X$ +\end_inset + + tal que +\begin_inset Formula $V\cap S\neq\emptyset\forall V\in{\cal E}(x)$ +\end_inset + + y supongamos +\begin_inset Formula $p\notin\overline{S}$ +\end_inset + +. + Entonces +\begin_inset Formula $p\in X\backslash\overline{S}\in{\cal E}(p)$ +\end_inset + +, pero +\begin_inset Formula $(X\backslash\overline{S})\cap S=\emptyset$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,d)$ +\end_inset + + es un espacio métrico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, dado +\begin_inset Formula $p\in X$ +\end_inset + +, +\begin_inset Formula $p\in\overline{S}\iff d(p,S)=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +, si suponemos +\begin_inset Formula $d(p,S)=r>0$ +\end_inset + +, entonces +\begin_inset Formula $B(p;r)\cap S=\emptyset$ +\end_inset + +, lo que contradice +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $d(p,S)=0$ +\end_inset + +, +\begin_inset Formula $\forall n\in\mathbb{N},\exists q\in S:d(p,q)<\frac{1}{n}$ +\end_inset + +, luego +\begin_inset Formula $\forall n\in\mathbb{N},B(p;\frac{1}{n})\cap S\neq\emptyset$ +\end_inset + + y +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq T\implies\overline{S}\subseteq\overline{T}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $S\subseteq T\subseteq\overline{T}\in{\cal C_{T}}$ +\end_inset + +, por lo que +\begin_inset Formula $\overline{T}$ +\end_inset + + es un cerrado que contiene a +\begin_inset Formula $S$ +\end_inset + + y por tanto +\begin_inset Formula $\overline{S}\subseteq\overline{T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\bigcup_{i\in I}\overline{S_{i}}\subseteq\overline{\bigcup_{i\in I}S_{i}}$ +\end_inset + +; +\begin_inset Formula $\bigcup_{i=1}^{n}\overline{S_{i}}=\overline{\bigcup_{i=1}^{n}S_{i}}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\forall j\in I,S_{j}\subseteq\bigcup_{i\in I}S_{i}\implies\overline{S_{j}}\subseteq\overline{\bigcup_{i\in I}S_{i}}\implies\bigcup_{i\in I}\overline{S_{i}}\subseteq\overline{\bigcup_{i\in I}S_{i}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\overline{\bigcup_{i\in I}S_{i}}\subseteq\overline{\bigcup_{i\in I}\overline{S_{i}}}\overset{\text{\textbf{SI \ensuremath{I} es finito}}}{=}\bigcup_{i\in I}\overline{S_{i}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\overline{\bigcap_{i\in I}S_{i}}\subseteq\bigcap_{i\in I}\overline{S_{i}}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +\forall i\in I,S_{i}\subseteq\overline{S_{i}}\implies\bigcap_{i\in I}S_{i}\subseteq\bigcap_{i\in I}\overline{S_{i}}\implies\overline{\bigcap_{i\in I}S_{i}}\subseteq\overline{\bigcap_{i\in I}\overline{S_{i}}}=\bigcap_{i\in I}\overline{S_{i}} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\in{\cal C_{T}}\iff\overline{S}=S$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $S\in{\cal C_{T}}\implies\overline{S}\subseteq S\overset{S\subseteq\overline{S}}{\implies}S=\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $S=\overline{S}\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\overline{\overline{S}}=\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D\subseteq X$ +\end_inset + + es +\series bold +denso +\series default + en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + si +\begin_inset Formula $\overline{D}=X$ +\end_inset + +, si y sólo si cualquier abierto no vacío corta a +\begin_inset Formula $D$ +\end_inset + +. + +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +separable +\series default + si admite un subconjunto denso y numerable. +\end_layout + +\begin_layout Standard +Todo espacio numerable es separable pero el recíproco no se cumple, pues + por ejemplo, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es denso en +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + + y numerable y por tanto +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es separable, pero no es numerable. + Igualmente +\begin_inset Formula $(X,{\cal T}_{D})$ +\end_inset + + es separable si y sólo si es numerable, mientras que +\begin_inset Formula $(X,{\cal T}_{CF})$ +\end_inset + + es siempre separable (basta tomar un subconjunto numerable no finito). +\end_layout + +\begin_layout Section +Puntos de acumulación y aislados +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $S\subseteq X$ +\end_inset + +, +\begin_inset Formula $p\in X$ +\end_inset + + es un +\series bold +punto de acumulación +\series default + de +\begin_inset Formula $S$ +\end_inset + + si +\begin_inset Formula $\forall U\in{\cal E}(p),(U\backslash\{p\})\cap S\neq\emptyset$ +\end_inset + +. + Llamamos +\series bold +acumulación +\series default + o +\series bold +conjunto derivado +\series default + de +\begin_inset Formula $S$ +\end_inset + + ( +\begin_inset Formula $\text{ac}(S)$ +\end_inset + + o +\begin_inset Formula $S'$ +\end_inset + +) al conjunto de todos los puntos de acumulación de +\begin_inset Formula $S$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $p\in S$ +\end_inset + + es un +\series bold +punto aislado +\series default + de +\begin_inset Formula $S$ +\end_inset + + si +\begin_inset Formula $\exists U\in{\cal E}(p):U\cap S=\{p\}$ +\end_inset + +, y el conjunto de todos los puntos aislados de +\begin_inset Formula $S$ +\end_inset + + es +\begin_inset Formula $\text{ais}(S)=S\backslash S'$ +\end_inset + +, y se tiene que +\begin_inset Formula $\overline{S}=S\cup S'$ +\end_inset + +. +\end_layout + +\begin_layout Section +Frontera +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $S\subseteq X$ +\end_inset + +, +\begin_inset Formula $p\in X$ +\end_inset + + es un +\series bold +punto frontera +\series default + de +\begin_inset Formula $S$ +\end_inset + + si +\begin_inset Formula $\forall U\in{\cal E}(p),(U\cap S\neq\emptyset\land U\cap(X\backslash S)\neq\emptyset)$ +\end_inset + +. + Llamamos +\series bold +frontera +\series default + de +\begin_inset Formula $S$ +\end_inset + + ( +\begin_inset Formula $\partial S$ +\end_inset + + o +\begin_inset Formula $\text{fr}(S)$ +\end_inset + +) al conjunto de todos los puntos frontera de +\begin_inset Formula $S$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial S=\overline{S}\cap\overline{X\backslash S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial S\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Además, en un espacio métrico, +\begin_inset Formula +\begin{eqnarray*} +p\in\partial S & \iff & \forall r>0,(B(p;r)\cap S\neq\emptyset\land B(p;r)\cap(X\backslash S)\neq\emptyset)\\ + & \iff & \forall n\in\mathbb{N},(B(p;\frac{1}{n})\cap S\neq\emptyset\land B(p;\frac{1}{n})\cap(X\backslash S)\neq\emptyset)\\ + & \iff & d(p,S)=d(p,X\backslash S)=0 +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Section +Interior +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, el +\series bold +interior +\series default + de +\begin_inset Formula $S$ +\end_inset + + es el mayor abierto contenido en +\begin_inset Formula $S$ +\end_inset + +, es decir, la unión de todos los abiertos contenidos en +\begin_inset Formula $S$ +\end_inset + +, y se denota +\begin_inset Formula +\[ +\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage newpage +\end_inset + +Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathring{S}=X\backslash\overline{X\backslash S}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $p\in\mathring{S}\implies\exists A\in{\cal T}:p\in A\subseteq\mathring{S}\subseteq S\implies A\cap(X\backslash S)=\emptyset\implies p\notin\overline{X\backslash S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\begin{array}{c} +X\backslash S\subseteq\overline{X\backslash S}\implies X\backslash\overline{X\backslash S}\subseteq S\\ +X\backslash\overline{X\backslash S}\in{\cal T} +\end{array}\implies X\backslash\overline{X\backslash S}\subseteq\mathring{S}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $S\in{\cal T}\iff S=\mathring{S}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial S=\overline{S}\backslash\mathring{S}$ +\end_inset + +. +\begin_inset Formula +\[ +\partial S=\overline{S}\cap\overline{X\backslash S}=\overline{S}\cap(X\backslash\mathring{S})=\overline{S}\backslash\mathring{S} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\in{\cal T}\iff S\cap\partial S=\emptyset$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $S\in{\cal T}\implies\partial S=\overline{S}\backslash\mathring{S}=\overline{S}\backslash S\implies\partial S\cap S=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\emptyset=\partial S\cap S=(\overline{S}\backslash\mathring{S})\cap S=S\backslash\mathring{S}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $p\in\mathring{S}\iff\exists U\in{\cal E}(p):U\subseteq S$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq T\implies\mathring{S}\subseteq\mathring{T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\bigcap_{i=1}^{n}\mathring{S_{i}}=\mathring{\overbrace{\bigcap_{i=1}^{n}S_{i}}}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{c} +\mathring{S}\cap\mathring{T}=(X\backslash\overline{X\backslash S})\cap(X\backslash\overline{X\backslash T})=X\backslash(\overline{X\backslash S}\cup\overline{X\backslash T})=\\ +=X\backslash\overline{(X\backslash S)\cup(X\backslash T)}=X\backslash\overline{X\backslash(S\cap T)}=\mathring{\overbrace{S\cap T}} +\end{array} +\] + +\end_inset + +Esto NO se cumple para la unión. +\end_layout + +\begin_layout Standard +Además, en un espacio métrico, +\begin_inset Formula +\begin{eqnarray*} +p\in\mathring{S} & \iff & \exists r>0:B(p;r)\subseteq S\\ + & \iff & \exists n\in\mathbb{N}:B(p;\frac{1}{n})\subseteq S\\ + & \iff & d(p,X\backslash S)>0 +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Section +Clausura, frontera e interior relativos +\end_layout + +\begin_layout Standard +Escribimos +\begin_inset Formula $\text{cl}_{X}(S)$ +\end_inset + +, +\begin_inset Formula $\text{int}_{X}(S)$ +\end_inset + + y +\begin_inset Formula $\partial_{X}(S)$ +\end_inset + + en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + y +\begin_inset Formula $\text{cl}_{H}(S)$ +\end_inset + +, +\begin_inset Formula $\text{int}_{H}(S)$ +\end_inset + + y +\begin_inset Formula $\partial_{H}(S)$ +\end_inset + + en +\begin_inset Formula $(H,{\cal T}|_{H})$ +\end_inset + +. + Así, sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq H\subseteq X$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{cl}_{H}(S)=\text{cl}_{X}(S)\cap H$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sabemos que +\begin_inset Formula $S\subseteq\text{cl}_{X}(S)\cap H\in{\cal C}_{H}$ +\end_inset + +, y como +\begin_inset Formula $\text{cl}_{H}(S)$ +\end_inset + + es el menor cerrado en +\begin_inset Formula $H$ +\end_inset + + que contiene a +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\text{cl}_{H}(S)\subseteq\text{cl}_{X}(S)\cap H$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p\in\text{cl}_{X}(S)\cap H$ +\end_inset + + y +\begin_inset Formula $U'\in{\cal E}_{H}(p)$ +\end_inset + +, entonces existe +\begin_inset Formula $U\in{\cal E}_{X}(p)$ +\end_inset + + tal que +\begin_inset Formula $U'=U\cap H$ +\end_inset + +. + Como +\begin_inset Formula $p\in\text{cl}_{X}(S)$ +\end_inset + +, +\begin_inset Formula $U\cap S\neq\emptyset$ +\end_inset + +, ahora bien, +\begin_inset Formula $U'\cap S=U\cap H\cap S=U\cap S\neq\emptyset$ +\end_inset + +, luego +\begin_inset Formula $p\in\text{cl}_{H}(S)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{int}_{X}(S)\cap H\subseteq\text{int}_{H}(S)$ +\end_inset + +, y esta inclusión suele ser estricta. +\series bold + +\begin_inset Newline newline +\end_inset + + +\series default + +\begin_inset Formula $\text{int}_{X}(S)\cap H$ +\end_inset + + es un abierto de +\begin_inset Formula $H$ +\end_inset + + contenido en +\begin_inset Formula $S$ +\end_inset + +, y por tanto +\begin_inset Formula $\text{int}_{X}(S)\cap H\subseteq\text{int}_{H}(S)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\partial_{H}(S)\subseteq\partial_{X}(S)\cap H$ +\end_inset + +. +\begin_inset Formula +\begin{multline*} +\begin{array}{c} +\partial_{H}(S)=\text{cl}_{H}(S)\backslash\text{int}_{H}(S)\subseteq(\text{cl}_{X}(S)\cap H)\backslash(\text{int}_{X}(S)\cap H)=\\ +=(\text{cl}_{X}(S)\backslash\text{int}_{X}(S))\cap H=\partial_{X}(S)\cap H +\end{array} +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Section +Convergencia +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + una sucesión de puntos de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + +\series bold +converge +\series default + o +\series bold +tiende +\series default + a +\begin_inset Formula $x$ +\end_inset + + ( +\begin_inset Formula $x_{n}\rightarrow x$ +\end_inset + + o +\begin_inset Formula $\lim x_{n}=x$ +\end_inset + +) si +\begin_inset Formula $\forall U\in{\cal E}(x),\exists n_{U}\in\mathbb{N}:\forall n\geq n_{U},x_{n}\in U$ +\end_inset + +. + En particular, en un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $x_{n}\rightarrow x\iff\forall\varepsilon>0,\exists n_{\varepsilon}\in\mathbb{N}:\forall n\geq n_{\varepsilon},x_{n}\in B(x;r)$ +\end_inset + +, o lo que es lo mismo, si la sucesión +\begin_inset Formula $\{d(x_{n},x)\}_{n=1}^{\infty}$ +\end_inset + + converge a 0 en +\begin_inset Formula $(\mathbb{R},d_{u})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico, +\begin_inset Formula $S\subseteq X$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + +, entonces +\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x\in\overline{S}$ +\end_inset + +, para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $B(x;\frac{1}{n})\cap S\neq\emptyset$ +\end_inset + +, luego podemos tomar +\begin_inset Formula $x_{n}\in B(x;\frac{1}{n})\cap S$ +\end_inset + + y construir así la sucesión. + Entonces +\begin_inset Formula $d(x_{n},x)<\frac{1}{n}$ +\end_inset + + y por tanto +\begin_inset Formula $x_{n}\rightarrow x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Cualquier +\begin_inset Formula $U\in{\cal E}(x)$ +\end_inset + + contiene puntos de la sucesión, de forma que +\begin_inset Formula $U\cap S\neq\emptyset$ +\end_inset + + y por tanto +\begin_inset Formula $x\in\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así pues, en un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $S$ +\end_inset + + es denso en +\begin_inset Formula $X$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\end_inset + +, y +\begin_inset Formula $x\in\partial S$ +\end_inset + + si y sólo si +\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$ +\end_inset + +. + Estas caracterizaciones sólo son ciertas en espacios métricos, pero no + es espacios topológicos arbitrarios. +\end_layout + +\end_body +\end_document |
