diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /tem/n3.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'tem/n3.lyx')
| -rw-r--r-- | tem/n3.lyx | 1734 |
1 files changed, 1734 insertions, 0 deletions
diff --git a/tem/n3.lyx b/tem/n3.lyx new file mode 100644 index 0000000..245e95c --- /dev/null +++ b/tem/n3.lyx @@ -0,0 +1,1734 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es +\series bold +continua +\series default + en +\begin_inset Formula $p\in X$ +\end_inset + + si +\begin_inset Formula $\forall V\in{\cal E}(f(p)),\exists U\in{\cal E}(p):f(U)\subseteq V$ +\end_inset + +. + Equivalentemente, si +\begin_inset Formula ${\cal B}(p)$ +\end_inset + + y +\begin_inset Formula ${\cal B}(f(p))$ +\end_inset + + son bases de entornos de +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $f(p)$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall V\in{\cal B}(f(p)),\exists U\in{\cal B}(p):f(U)\subseteq V$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, dado +\begin_inset Formula $V\in{\cal B}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, pero entonces existe +\begin_inset Formula $U'\in{\cal B}(p)$ +\end_inset + + con +\begin_inset Formula $U'\subseteq U$ +\end_inset + +, luego +\begin_inset Formula $f(U')\subseteq f(U)\subseteq V$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $V'\in{\cal B}(f(p))$ +\end_inset + + con +\begin_inset Formula $V'\subseteq V$ +\end_inset + +, pero existe +\begin_inset Formula $U\in{\cal B}(p)\subseteq{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V'\subseteq V$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí que +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + + respecto a las topologías métricas +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + y +\begin_inset Formula ${\cal T}_{d'}$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in X,(d(x,p)<\delta\implies d'(f(x),f(p))<\varepsilon)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Tomando +\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$ +\end_inset + + y +\begin_inset Formula ${\cal B}(f(p))=\{B(f(p);r)\}_{r>0}$ +\end_inset + +, la equivalencia es consecuencia de lo anterior y de que +\begin_inset Formula $x\in B(p;\delta)\iff d(x,p)<\delta$ +\end_inset + + y +\begin_inset Formula $f(p)\in B(f(p);\varepsilon)\iff d(f(x),f(p))<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es 1AN, +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in X$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\{x_{n}\}_{n=1}^{\infty}\subseteq X,(x_{n}\rightarrow p\implies f(x_{n})\rightarrow f(p))$ +\end_inset + +. + Además, la implicación a la derecha se cumple para espacios topológicos + arbitrarios. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, dada una sucesión +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}\subseteq X$ +\end_inset + + que converge a +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, y por la convergencia de +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + +, existe un +\begin_inset Formula $n_{U}$ +\end_inset + + tal que si +\begin_inset Formula $n>n_{U}$ +\end_inset + + entonces +\begin_inset Formula $x_{n}\in U$ +\end_inset + +, pero entonces +\begin_inset Formula $f(x_{n})\in f(U)\subseteq V$ +\end_inset + +, luego +\begin_inset Formula $f(x_{n})\rightarrow f(p)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula ${\cal B}(p)$ +\end_inset + + una base de entornos de +\begin_inset Formula $p$ +\end_inset + + numerable, si suponemos que +\begin_inset Formula $f$ +\end_inset + + no es continua, entonces +\begin_inset Formula $\exists V\in{\cal B}(f(p)):\forall U\in{\cal B}(p),f(U)\nsubseteq V$ +\end_inset + +. + Sea ahora +\begin_inset Formula $U_{1}\in{\cal B}(p)$ +\end_inset + + y +\begin_inset Formula $V_{1}$ +\end_inset + + un entorno de +\begin_inset Formula $p$ +\end_inset + + que no contiene a +\begin_inset Formula $U_{1}$ +\end_inset + +. + Podemos tomar +\begin_inset Formula $V'_{1}:=V_{1}\cap U_{1}\in{\cal E}(p)$ +\end_inset + + y existirá +\begin_inset Formula $U_{2}\in{\cal B}(p)$ +\end_inset + + con +\begin_inset Formula $U_{2}\subseteq V'_{1}$ +\end_inset + +. + Como +\begin_inset Formula ${\cal B}(p)$ +\end_inset + + es numerable, podemos hacer esto sucesivamente ordenando así sus elementos + en una sucesión +\begin_inset Formula $\{U_{n}\}_{n=1}^{\infty}$ +\end_inset + + de entornos con +\begin_inset Formula $U_{1}\supseteq U_{2}\supseteq\dots$ +\end_inset + +. + Con esto formamos una sucesión +\begin_inset Formula $\{x_{n}\}_{n=1}^{\infty}$ +\end_inset + + con +\begin_inset Formula $x_{i}\in U_{i}$ +\end_inset + + y +\begin_inset Formula $f(x_{i})\notin V$ +\end_inset + +, de modo que +\begin_inset Formula $x_{n}\rightarrow p$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + mientras que +\begin_inset Formula $f(x_{n})\not\rightarrow f(p)$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, lo que contradice la hipótesis. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(X,{\cal T})\overset{f}{\rightarrow}(Y,{\cal T}')\overset{g}{\rightarrow}(Z,{\cal T}'')$ +\end_inset + + aplicaciones continuas en +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $f(p)$ +\end_inset + +, respectivamente, entonces +\begin_inset Formula $g\circ f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $W\in{\cal E}(g(f(p)))$ +\end_inset + +, como +\begin_inset Formula $g$ +\end_inset + + es continua en +\begin_inset Formula $f(p)$ +\end_inset + +, existe +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + + con +\begin_inset Formula $g(V)\subseteq W$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +. + Entonces +\begin_inset Formula $g(f(U))\subseteq g(V)\subseteq W$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $S\subseteq X$ +\end_inset + +, si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in\overline{S}$ +\end_inset + +, entonces +\begin_inset Formula $f(p)\in\overline{f(S)}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, pero como +\begin_inset Formula $p\in\overline{S}$ +\end_inset + + entonces +\begin_inset Formula $U\cap S\neq\emptyset$ +\end_inset + +, luego +\begin_inset Formula $\emptyset\neq f(U\cap S)\subseteq f(U)\cap f(S)\subseteq V\cap f(S)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Continuidad global +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua si lo es en cualquier punto de +\begin_inset Formula $X$ +\end_inset + +. + Equivalentemente, +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall A\in{\cal T}',f^{-1}(A)\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $f$ +\end_inset + + continua, +\begin_inset Formula $A\in{\cal T}'$ +\end_inset + +. + Dado +\begin_inset Formula $p\in f^{-1}(A)$ +\end_inset + + arbitrario, entonces +\begin_inset Formula $f(p)\in A\in{\cal E}(f(p))$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + es continua, existe +\begin_inset Formula $V_{p}\in{\cal E}(p)$ +\end_inset + + con +\begin_inset Formula $f(V_{p})\subseteq A$ +\end_inset + +, luego +\begin_inset Formula $V_{p}\subseteq f^{-1}(A)$ +\end_inset + +. + Pero entonces +\begin_inset Formula $\bigcup_{p\in f^{-1}(A)}V_{p}=f^{-1}(A)\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $A\in{\cal E}(f(p))$ +\end_inset + +. + Entonces +\begin_inset Formula $p\in f^{-1}(A)$ +\end_inset + +, y como por hipótesis +\begin_inset Formula $f^{-1}(A)\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $f^{-1}(A)\in{\cal E}(p)$ +\end_inset + + es pues el entorno de +\begin_inset Formula $p$ +\end_inset + + buscado para que +\begin_inset Formula $f$ +\end_inset + + sea continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall p\in X,V\in{\cal E}(f(p));f^{-1}(V)\in{\cal E}(p)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Trivial. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Cada +\begin_inset Formula $A\in{\cal T}'$ +\end_inset + + se puede escribir como +\begin_inset Formula $A=\bigcup_{q\in A}V_{q}$ +\end_inset + + con +\begin_inset Formula $V_{q}\in{\cal E}(q)$ +\end_inset + +, de modo que +\begin_inset Formula $f^{-1}(A)=f^{-1}(\bigcup_{q\in A}V_{q})=\bigcup_{q\in A}f^{-1}(V_{q})$ +\end_inset + +. + Por tanto, si los +\begin_inset Formula $f^{-1}(V_{q})$ +\end_inset + + son abiertos, +\begin_inset Formula $f^{-1}(A)$ +\end_inset + + también lo es por ser unión arbitraria de abiertos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall C\in{\cal C}_{{\cal T}'},f^{-1}(C)\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua y +\begin_inset Formula $C$ +\end_inset + + es cerrado en +\begin_inset Formula $(Y,{\cal T}')$ +\end_inset + +, entonces +\begin_inset Formula $X\backslash f^{-1}(C)=f^{-1}(Y\backslash C)\in{\cal T}$ +\end_inset + +, luego +\begin_inset Formula $f^{-1}(C)\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Análoga. +\end_layout + +\begin_layout Standard +Algunas aplicaciones continuas: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $id:(X,{\cal T})\rightarrow(X,{\cal T}')$ +\end_inset + + es continua si y sólo si +\begin_inset Formula ${\cal T}'\subseteq{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Una aplicación constante siempre es continua. +\end_layout + +\begin_layout Enumerate +Toda +\begin_inset Formula $f:(X,{\cal T}_{D})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Toda +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}_{T})$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f,g:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + son continuas entonces +\begin_inset Formula $f+g,fg:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + también lo son. + Si además +\begin_inset Formula $g(x)\neq0\forall x\in X$ +\end_inset + +, entonces +\begin_inset Formula $\frac{f}{g}:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Las proyecciones +\begin_inset Formula $\pi_{i}:(\mathbb{R}^{n},d_{u})\rightarrow(\mathbb{R},d_{u})$ +\end_inset + + con +\begin_inset Formula $\pi_{i}(x_{1},\dots,x_{n})=x_{i}$ +\end_inset + + son continuas. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:(X,{\cal T})\rightarrow(\mathbb{R}^{n},{\cal T}_{u})$ +\end_inset + + dada por +\begin_inset Formula $f(x)=(f_{1}(x),\dots,f_{n}(x))$ +\end_inset + +, siendo +\begin_inset Formula $f_{1},\dots,f_{n}:(X,{\cal T})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + las llamadas +\series bold +funciones coordenadas +\series default + de +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $f_{1},\dots,f_{n}$ +\end_inset + + lo son. +\end_layout + +\begin_layout Enumerate +Las funciones polinómicas +\begin_inset Formula $f:(\mathbb{R}^{n},{\cal T}_{u})\rightarrow(\mathbb{R},{\cal T}_{u})$ +\end_inset + + sobre una o varias variables son siempre continuas. +\end_layout + +\begin_layout Standard +Para toda aplicación continua +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + y todo +\begin_inset Formula $S\subseteq X$ +\end_inset + + se tiene que +\begin_inset Formula $f(\overline{S})\subseteq\overline{f(S)}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Homeomorfismos +\end_layout + +\begin_layout Standard +Un +\series bold +homeomorfismo +\series default + es una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + biyectiva, continua y con aplicación inversa continua. + Dos espacios topológicos son +\series bold +homeomorfos +\series default + si existe un homeomorfismo entre ellos, y una +\series bold +propiedad topológica +\series default + es una propiedad de los espacios topológicos invariante por homomorfismos. + Ejemplos: +\end_layout + +\begin_layout Itemize +Dos espacios topológicos triviales, o dos discretos, son homeomorfos si + y sólo si existe una aplicación biyectiva entre ellos. +\end_layout + +\begin_layout Itemize +En +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + +, son homeomorfos todos los intervalos de la forma +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $[c,d]$ +\end_inset + +; +\begin_inset Formula $(a,b)$ +\end_inset + + y +\begin_inset Formula $(c,d)$ +\end_inset + +; +\begin_inset Formula $(a,+\infty)$ +\end_inset + + y +\begin_inset Formula $(b,+\infty)$ +\end_inset + +; +\begin_inset Formula $(-\infty,a)$ +\end_inset + + y +\begin_inset Formula $(-\infty,b)$ +\end_inset + +, y +\begin_inset Formula $(a,+\infty)$ +\end_inset + + y +\begin_inset Formula $(-\infty,b)$ +\end_inset + +. + +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es homeomorfo a cualquier intervalo abierto y acotado, por ejemplo, por + +\begin_inset Formula $\tan:(-\frac{\pi}{2},\frac{\pi}{2})\rightarrow\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada una aplicación +\emph on +biyectiva +\emph default + +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + +, son equivalentes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es un homeomorfismo. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\in{\cal T}\iff f(A)\in{\cal T}'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $C\in{\cal C_{T}}\iff f(C)\in{\cal C}_{{\cal T}'}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $g:=f^{-1}:Y\rightarrow X$ +\end_inset + + continua y +\begin_inset Formula $A\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $f(A)=(f^{-1})^{-1}(A)=g^{-1}(A)\in{\cal T}'$ +\end_inset + +. + Recíprocamente, si +\begin_inset Formula $f(A)\in{\cal T}'$ +\end_inset + + entonces +\begin_inset Formula $f^{-1}(f(A))=A\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\implies1]$ +\end_inset + + Para ver que +\begin_inset Formula $f$ +\end_inset + + es continua, dado +\begin_inset Formula $A\subseteq X$ +\end_inset + +, si +\begin_inset Formula $f(A)\in{\cal T}'$ +\end_inset + + entonces +\begin_inset Formula $f^{-1}(f(A))=A\in{\cal T}$ +\end_inset + +. + Para ver que +\begin_inset Formula $g:=f^{-1}$ +\end_inset + + es continua, dado +\begin_inset Formula $A\subseteq X$ +\end_inset + +, si +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + entonces +\begin_inset Formula $g^{-1}(A)=f(A)\in{\cal T}'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\iff3]$ +\end_inset + + Análogo usando la caracterización de continuidad por cerrados. +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es +\series bold +abierta +\series default + si +\begin_inset Formula $\forall A\in{\cal T},f(A)\in{\cal T}'$ +\end_inset + +, y es +\series bold +cerrada +\series default + si +\begin_inset Formula $\forall C\in{\cal C_{T}},f(C)\in{\cal C}_{{\cal T}'}$ +\end_inset + +. + Así, una aplicación biyectiva es un homeomorfismo si y sólo si es continua + y abierta (o continua y cerrada). +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es abierta si y sólo si +\begin_inset Formula $\forall S\subseteq X,f(\mathring{S})\subseteq\mathring{\overbrace{f(S)}}$ +\end_inset + +, es un homeomorfismo si y sólo si es biyectiva y +\begin_inset Formula $\forall S\subseteq X,f(\mathring{S})=\mathring{\overbrace{f(S)}}$ +\end_inset + +, y es cerrada si y sólo si +\begin_inset Formula $\forall S\subseteq X,\overline{f(S)}\subseteq f(\overline{S})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Continuidad en subespacios +\end_layout + +\begin_layout Standard +La aplicación inclusión +\begin_inset Formula $i:(H,{\cal T}_{H})\looparrowright(X,{\cal T})$ +\end_inset + + es continua. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A\in{\cal T}$ +\end_inset + +, +\begin_inset Formula $i^{-1}(A)=A\cap H\in{\cal T}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + con +\begin_inset Formula $f(X)\subseteq H\subseteq Y$ +\end_inset + + es continua en +\begin_inset Formula $p\in X$ +\end_inset + + si y sólo si +\begin_inset Formula $\hat{f}:(X,{\cal T})\rightarrow(H,{\cal T}_{H})$ +\end_inset + + con +\begin_inset Formula $\hat{f}(x)=f(x)$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. + En particular, +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\hat{f}$ +\end_inset + + es continua. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, dado +\begin_inset Formula $V'\in{\cal E}_{{\cal T}'_{H}}(f(p))$ +\end_inset + +, existe +\begin_inset Formula $V\in{\cal E}_{{\cal T}'}(f(p))$ +\end_inset + + con +\begin_inset Formula $V'=V\cap H$ +\end_inset + +, luego existe +\begin_inset Formula $U\in{\cal E}_{{\cal T}}(p)$ +\end_inset + + tal que +\begin_inset Formula $f(U)\subseteq V$ +\end_inset + +, y entonces +\begin_inset Formula $f'(U)=f(U)=f(U)\cap H\subseteq V\cap H=V'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(H,{\cal T}'_{H})$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, como la inclusión es continua en +\begin_inset Formula $f(p)$ +\end_inset + + entonces +\begin_inset Formula $f=i\circ\hat{f}$ +\end_inset + + es también continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in H\subseteq X$ +\end_inset + + entonces +\begin_inset Formula $f|_{H}:(H,{\cal T}_{H})\rightarrow(Y,{\cal T}')$ +\end_inset + + también es continua en +\begin_inset Formula $p$ +\end_inset + +. + En particular, si +\begin_inset Formula $f$ +\end_inset + + es continua también lo es +\begin_inset Formula $f|_{H}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Como la inclusión es continua en +\begin_inset Formula $p$ +\end_inset + +, +\begin_inset Formula $f|_{H}=f\circ i$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p\in X$ +\end_inset + + si y sólo si existe +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $f|_{U}$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Basta tomar +\begin_inset Formula $U=X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f|_{U}:(U,{\cal T}_{U})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +, sea +\begin_inset Formula $V\in{\cal E}(f(p))$ +\end_inset + +, por la continuidad de +\begin_inset Formula $f|_{U}$ +\end_inset + + existe +\begin_inset Formula $U'\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $f|_{U}(U')\subseteq V$ +\end_inset + +, con lo que +\begin_inset Formula $f(U')=f|_{U}(U')\subseteq V$ +\end_inset + +, lo que prueba la continuidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + y +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + una familia de abiertos de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + con +\begin_inset Formula $X=\bigcup_{i\in I}A_{i}$ +\end_inset + +, si +\begin_inset Formula $f|_{A_{i}}$ +\end_inset + + es continua para todo +\begin_inset Formula $i\in I$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $p\in X$ +\end_inset + +, existe un +\begin_inset Formula $i_{0}\in I$ +\end_inset + + tal que +\begin_inset Formula $p\in A_{i_{0}}\in{\cal E}(p)$ +\end_inset + + y por la propiedad anterior, +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + y +\begin_inset Formula $\{C_{1},\dots,C_{n}\}$ +\end_inset + + una familia finita de cerrados de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + con +\begin_inset Formula $X=\bigcup_{i=1}^{n}C_{i}$ +\end_inset + +, si +\begin_inset Formula $f|_{C_{i}}$ +\end_inset + + es continua para todo +\begin_inset Formula $i\in1,\dots,n$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es continua. + +\series bold +Demostración: +\series default + Dado +\begin_inset Formula $C'\in(Y,{\cal T}')$ +\end_inset + +, +\begin_inset Formula $f^{-1}(C')=f^{-1}(C')\cap X=f^{-1}(C')\cap\left(\bigcup_{i=1}^{n}C_{i}\right)=\bigcup_{i=1}^{n}(C_{i}\cap f^{-1}(C'))=\bigcup_{i=1}^{n}f|_{C_{i}}^{-1}(C')$ +\end_inset + +. + Como +\begin_inset Formula $f|_{C_{i}}$ +\end_inset + + es continua para cualquier +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $f|_{C_{i}}^{-1}(C')$ +\end_inset + + es cerrado en +\begin_inset Formula $(C_{i},{\cal T}_{C_{i}})$ +\end_inset + +, y como +\begin_inset Formula $C_{i}$ +\end_inset + + es cerrado en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + entonces +\begin_inset Formula $f|_{C_{i}}^{-1}(C')$ +\end_inset + + es cerrado en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. + Por tanto +\begin_inset Formula $f^{-1}(C')$ +\end_inset + + es cerrado en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es continua. +\end_layout + +\begin_layout Section +Continuidad uniforme e isometrías +\end_layout + +\begin_layout Standard +Definimos la +\series bold +oscilación +\series default + de una función +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + en un intervalo +\begin_inset Formula $I\subseteq D$ +\end_inset + + como +\begin_inset Formula +\[ +\theta(f,J)=\begin{cases} +\sup\{f(I)\}-\inf\{f(I)\} & \text{si }f(I)\text{ está acotado}\\ ++\infty & \text{si }f(I)\text{ no está acotado} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + es +\series bold +uniformemente continua +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x_{1},x_{2}\in X,(d(x_{1},x_{2})<\delta\implies d'(f(x_{1}),f(x_{2}))<\varepsilon)$ +\end_inset + +. + Toda aplicación uniformemente continua es continua. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +isometría +\series default + a una aplicación +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + tal que +\begin_inset Formula $\forall x_{1},x_{2}\in X,(d(x_{1},x_{2})=d'(f(x_{1}),f(x_{2})))$ +\end_inset + +. + Toda isometría es inyectiva y uniformemente continua. + Finalmente, una aplicación +\begin_inset Formula $f:(X,d)\rightarrow(X,d')$ +\end_inset + + es +\series bold +lipschitziana +\series default + si +\begin_inset Formula $\exists M>0:\forall x,y\in X,d'(f(x),f(y))\leq Md(x,y)$ +\end_inset + +, y es además +\series bold +contráctil +\series default + si podemos encontrar un +\begin_inset Formula $M<1$ +\end_inset + + para el que se cumpla la propiedad. +\end_layout + +\end_body +\end_document |
