diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-07-18 17:14:15 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-07-18 17:14:15 +0200 |
| commit | 258b3b63e4e68cfda6a5b8e086910cc384f10d47 (patch) | |
| tree | 584a08c6f7aae3251f58727c6e26bc635ee4262f /ts/n4.lyx | |
| parent | 1a39cc68a5be44f102df6d975ff2b63b7d05fa2a (diff) | |
Terminado superficies
Diffstat (limited to 'ts/n4.lyx')
| -rw-r--r-- | ts/n4.lyx | 164 |
1 files changed, 79 insertions, 85 deletions
@@ -2500,103 +2500,97 @@ Si \begin_inset Note Comment status open +\begin_layout Itemize +\begin_inset Argument item:1 +status open + \begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + -\backslash -begin{itemize} \end_layout -\begin_layout Plain Layout +\end_inset -\backslash -item[$ -\backslash -implies]$] Sea $F: -\backslash -mathbb{S}^1 -\backslash -times[0,1] -\backslash -to -\backslash -mathbb{S}^1$ la homotopía de una cierta función constante $c(z):=z_0$ a - $f$ y definimos $ -\backslash -hat f: -\backslash -mathbb{D}^2 -\backslash -to -\backslash -mathbb{S}^1$ como $ -\backslash -hat f(0):=z_0$ y $ -\backslash -hat f(z):=F( -\backslash -frac z{ -\backslash -Vert z -\backslash -Vert}, -\backslash -Vert z -\backslash -Vert)$ para $z -\backslash -neq0$. - Para ver que $ -\backslash -hat f$ es continua también en $z_0$, $ -\backslash -lim_{z -\backslash -to0} -\backslash -hat f(z)= -\backslash -lim_{z -\backslash -to0}F({z -\backslash -over -\backslash -Vert z -\backslash -Vert}, -\backslash -Vert z -\backslash -Vert)=z_0$. - Para $z -\backslash -in -\backslash -mathbb{S}^1$, $ -\backslash -hat f(z)=F(z,1)=f(z)$. +Si +\begin_inset Formula $\deg f=0$ +\end_inset + +, existe una homotopía +\begin_inset Formula $F:\mathbb{S}^{1}\times[0,1]\to\mathbb{S}^{1}$ +\end_inset + + de una función constante en +\begin_inset Formula $z_{0}\in\mathbb{S}^{1}$ +\end_inset + + a +\begin_inset Formula $f$ +\end_inset + +. + Entonces tomamos +\begin_inset Formula $\hat{f}:\mathbb{D}^{2}\to\mathbb{S}^{1}$ +\end_inset + + como +\begin_inset Formula $\hat{f}(re(\theta)):=F(e(\theta),r)$ +\end_inset + +, que está bien definida porque, si +\begin_inset Formula $re(\theta)=r'e(\theta')$ +\end_inset + + con +\begin_inset Formula $(r,\theta)\neq(r',\theta')$ +\end_inset + +, debe ser +\begin_inset Formula $r=r'=0$ +\end_inset + +, y entonces +\begin_inset Formula $F(e(\theta),r)=z_{0}=F(e(\theta'),r')$ +\end_inset + +. \end_layout +\begin_layout Itemize +\begin_inset Argument item:1 +status open + \begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + -\backslash -item[$ -\backslash -impliedby]$] Definimos $F(z,t):= -\backslash -tilde f(tz)$. - Entonces $F(z,1)= -\backslash -hat f(z)=f(z)$ y $F(z,0)= -\backslash -hat f(0)$ que es constante, y como $F$ es continua, define una homotopía - entre $f$ y una constante. \end_layout -\begin_layout Plain Layout +\end_inset -\backslash -end{itemize} +Basta ver que +\begin_inset Formula $F:\mathbb{S}^{1}\times[0,1]\to\mathbb{S}^{1}$ +\end_inset + + dada por +\begin_inset Formula $F(z,t):=\hat{f}(zt)$ +\end_inset + + es una homotopía de la función constante en +\begin_inset Formula $\hat{f}(0)$ +\end_inset + + a +\begin_inset Formula $f$ +\end_inset + +, y entonces +\begin_inset Formula $f$ +\end_inset + + tiene el mismo grado que una función constante, 0. \end_layout \end_inset |
