aboutsummaryrefslogtreecommitdiff
path: root/ts/n4.lyx
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2020-07-18 17:14:15 +0200
committerJuan Marín Noguera <juan.marinn@um.es>2020-07-18 17:14:15 +0200
commit258b3b63e4e68cfda6a5b8e086910cc384f10d47 (patch)
tree584a08c6f7aae3251f58727c6e26bc635ee4262f /ts/n4.lyx
parent1a39cc68a5be44f102df6d975ff2b63b7d05fa2a (diff)
Terminado superficies
Diffstat (limited to 'ts/n4.lyx')
-rw-r--r--ts/n4.lyx164
1 files changed, 79 insertions, 85 deletions
diff --git a/ts/n4.lyx b/ts/n4.lyx
index 52c7efa..c315d68 100644
--- a/ts/n4.lyx
+++ b/ts/n4.lyx
@@ -2500,103 +2500,97 @@ Si
\begin_inset Note Comment
status open
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
-\backslash
-begin{itemize}
\end_layout
-\begin_layout Plain Layout
+\end_inset
-\backslash
-item[$
-\backslash
-implies]$] Sea $F:
-\backslash
-mathbb{S}^1
-\backslash
-times[0,1]
-\backslash
-to
-\backslash
-mathbb{S}^1$ la homotopía de una cierta función constante $c(z):=z_0$ a
- $f$ y definimos $
-\backslash
-hat f:
-\backslash
-mathbb{D}^2
-\backslash
-to
-\backslash
-mathbb{S}^1$ como $
-\backslash
-hat f(0):=z_0$ y $
-\backslash
-hat f(z):=F(
-\backslash
-frac z{
-\backslash
-Vert z
-\backslash
-Vert},
-\backslash
-Vert z
-\backslash
-Vert)$ para $z
-\backslash
-neq0$.
- Para ver que $
-\backslash
-hat f$ es continua también en $z_0$, $
-\backslash
-lim_{z
-\backslash
-to0}
-\backslash
-hat f(z)=
-\backslash
-lim_{z
-\backslash
-to0}F({z
-\backslash
-over
-\backslash
-Vert z
-\backslash
-Vert},
-\backslash
-Vert z
-\backslash
-Vert)=z_0$.
- Para $z
-\backslash
-in
-\backslash
-mathbb{S}^1$, $
-\backslash
-hat f(z)=F(z,1)=f(z)$.
+Si
+\begin_inset Formula $\deg f=0$
+\end_inset
+
+, existe una homotopía
+\begin_inset Formula $F:\mathbb{S}^{1}\times[0,1]\to\mathbb{S}^{1}$
+\end_inset
+
+ de una función constante en
+\begin_inset Formula $z_{0}\in\mathbb{S}^{1}$
+\end_inset
+
+ a
+\begin_inset Formula $f$
+\end_inset
+
+.
+ Entonces tomamos
+\begin_inset Formula $\hat{f}:\mathbb{D}^{2}\to\mathbb{S}^{1}$
+\end_inset
+
+ como
+\begin_inset Formula $\hat{f}(re(\theta)):=F(e(\theta),r)$
+\end_inset
+
+, que está bien definida porque, si
+\begin_inset Formula $re(\theta)=r'e(\theta')$
+\end_inset
+
+ con
+\begin_inset Formula $(r,\theta)\neq(r',\theta')$
+\end_inset
+
+, debe ser
+\begin_inset Formula $r=r'=0$
+\end_inset
+
+, y entonces
+\begin_inset Formula $F(e(\theta),r)=z_{0}=F(e(\theta'),r')$
+\end_inset
+
+.
\end_layout
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
-\backslash
-item[$
-\backslash
-impliedby]$] Definimos $F(z,t):=
-\backslash
-tilde f(tz)$.
- Entonces $F(z,1)=
-\backslash
-hat f(z)=f(z)$ y $F(z,0)=
-\backslash
-hat f(0)$ que es constante, y como $F$ es continua, define una homotopía
- entre $f$ y una constante.
\end_layout
-\begin_layout Plain Layout
+\end_inset
-\backslash
-end{itemize}
+Basta ver que
+\begin_inset Formula $F:\mathbb{S}^{1}\times[0,1]\to\mathbb{S}^{1}$
+\end_inset
+
+ dada por
+\begin_inset Formula $F(z,t):=\hat{f}(zt)$
+\end_inset
+
+ es una homotopía de la función constante en
+\begin_inset Formula $\hat{f}(0)$
+\end_inset
+
+ a
+\begin_inset Formula $f$
+\end_inset
+
+, y entonces
+\begin_inset Formula $f$
+\end_inset
+
+ tiene el mismo grado que una función constante, 0.
\end_layout
\end_inset