diff options
Diffstat (limited to 'aalg/n3.lyx')
| -rw-r--r-- | aalg/n3.lyx | 1955 |
1 files changed, 1955 insertions, 0 deletions
diff --git a/aalg/n3.lyx b/aalg/n3.lyx new file mode 100644 index 0000000..d0e0932 --- /dev/null +++ b/aalg/n3.lyx @@ -0,0 +1,1955 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\usepackage{tikz} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +plano afín +\series default + es una terna +\begin_inset Formula $\mathbb{A}=({\cal P},{\cal L},\epsilon)$ +\end_inset + + formada por los conjuntos +\begin_inset Formula ${\cal P},{\cal L}\neq\emptyset$ +\end_inset + +, cuyos elementos se llaman +\series bold +puntos +\series default + y +\series bold +rectas +\series default +, respectivamente, y la +\series bold +relación de incidencia +\series default + +\begin_inset Formula $\epsilon\subseteq{\cal P}\times{\cal L}$ +\end_inset + +, que satisface que +\begin_inset Formula $\forall P,Q\in{\cal P},\ell\in{\cal L}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\family sans +\begin_inset Formula $P\neq Q\implies\exists!\ell\in{\cal L}:P,Q\epsilon\ell$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists P,Q,R\in{\cal P}:\nexists\ell\in{\cal L}:P,Q,R\epsilon\ell$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P\not\epsilon\ell\implies\exists!m\in{\cal L}:(P\epsilon m\land\nexists Q\in{\cal P}:Q\epsilon\ell,m)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $P\in{\cal P}$ +\end_inset + + es +\series bold +incidente +\series default + con +\begin_inset Formula $\ell\in{\cal L}$ +\end_inset + + si +\begin_inset Formula $P\epsilon\ell$ +\end_inset + +, y +\begin_inset Formula $\ell,m\in{\cal L}$ +\end_inset + + son +\series bold +paralelas +\series default + si +\begin_inset Formula $\nexists P:P\epsilon\ell,m$ +\end_inset + +. + Si +\begin_inset Formula $V$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial y +\begin_inset Formula $\dim_{\mathbb{K}}V\geq2$ +\end_inset + +, definimos el plano afín +\begin_inset Formula $\mathbb{A}(V):=({\cal P}(V),{\cal L}(V),\in)$ +\end_inset + + con +\begin_inset Formula ${\cal P}(V):=V$ +\end_inset + + y +\begin_inset Formula ${\cal L}(V)=\{\vec{v}+<\vec{w}>\}_{\vec{v},\vec{w}\in V,\vec{w}\neq0}$ +\end_inset + +, y escribimos +\begin_inset Formula $\mathbb{A}^{n}(\mathbb{K}):=\mathbb{A}(\mathbb{K}^{n})$ +\end_inset + +. + Llamamos a +\begin_inset Formula $\mathbb{A}^{2}(\mathbb{R})$ +\end_inset + + el +\series bold +plano afín usual +\series default +. +\end_layout + +\begin_layout Standard +Un +\series bold +plano proyectivo +\series default + es una terna +\begin_inset Formula $\mathbb{P}=({\cal P},{\cal L},\epsilon)$ +\end_inset + + similar a un plano afín pero cambiando el último axioma por que +\begin_inset Formula $\forall\ell,m\in{\cal L}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +3. +\end_layout + +\end_inset + + +\family sans + +\begin_inset Formula $\exists P\in{\cal P}:P\epsilon\ell,m$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + + +\begin_inset Formula $\exists P,Q,R\in{\cal P}:(P\neq Q\neq R\neq P\land P,Q,R\in\ell)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +principio de dualidad para planos proyectivos +\series default + afirma que si +\begin_inset Formula $\pi:=({\cal P},{\cal L},\epsilon)$ +\end_inset + + es un plano proyectivo entonces +\begin_inset Formula $\pi^{*}:=({\cal L},{\cal P},\epsilon^{*})$ +\end_inset + + con +\begin_inset Formula $\ell\epsilon^{*}P\iff P\epsilon\ell$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall\ell,m\in{\cal L},(\ell\neq m\implies\exists!P\in{\cal P}:P\epsilon\ell,m)$ +\end_inset + +: El axioma 3 asegura que +\begin_inset Formula $P$ +\end_inset + + existe. + Ahora bien, si existiera otro +\begin_inset Formula $Q\neq P$ +\end_inset + + con +\begin_inset Formula $Q\epsilon\ell,m$ +\end_inset + +, por el axioma 1 se tendría +\begin_inset Formula $\ell=m\#$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists\ell,m,n\in{\cal L}:\nexists P\in{\cal P}:P\epsilon\ell,m,n$ +\end_inset + +: El axioma 2 nos dice que hay 3 puntos +\begin_inset Formula $Q,R,S\in{\cal P}$ +\end_inset + + para los que +\begin_inset Formula $\nexists\ell\in{\cal L}:Q,R,S\epsilon\ell$ +\end_inset + +. + Si fueran +\begin_inset Formula $Q=R\neq S$ +\end_inset + +, el axioma 1 nos dice que existe una recta que los contiene, y si fueran + +\begin_inset Formula $Q=R=S$ +\end_inset + +, podríamos tomar uno de los puntos del axioma 4 (para alguna recta) como + punto distinto a este para aplicar el axioma 1. + Por tanto los 3 puntos son distintos. + Sean ahora +\begin_inset Formula $\ell:=QR$ +\end_inset + +, +\begin_inset Formula $m:=RS$ +\end_inset + + y +\begin_inset Formula $n:=SQ$ +\end_inset + + (aplicando el axioma 1). + Si hubiera un punto +\begin_inset Formula $P\epsilon\ell,m,n$ +\end_inset + + (podemos suponer +\begin_inset Formula $P\neq Q,R$ +\end_inset + +), entonces por el axioma 1 +\begin_inset Formula $n=PQ=\ell=PR=m$ +\end_inset + + y entonces +\begin_inset Formula $Q,R,S\in\ell\#$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall P,Q\in{\cal P},\exists\ell\in{\cal L}:P,Q\epsilon\ell$ +\end_inset + +. + Si +\begin_inset Formula $P\neq Q$ +\end_inset + +, esto nos lo asegura el axioma 1. + Para poder aplicarlo con +\begin_inset Formula $P=Q$ +\end_inset + +, tomamos un punto de los dados por el axioma 4 que sea distinto a +\begin_inset Formula $P$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall P\in{\cal P},\exists\ell,m,n\in{\cal L}:(\ell\neq m\neq n\neq\ell\land P\epsilon\ell,m,n)$ +\end_inset + +. + Tomamos los puntos +\begin_inset Formula $Q,R,S$ +\end_inset + + dados por el axioma 2, que ya hemos visto que deben ser distintos. + Podemos suponer +\begin_inset Formula $P\neq Q,R$ +\end_inset + +, y entonces podemos suponer +\begin_inset Formula $PQ\neq PR$ +\end_inset + +. + En efecto, si fueran iguales sería +\begin_inset Formula $P\epsilon QR$ +\end_inset + + y +\begin_inset Formula $S\not\epsilon QR=PR$ +\end_inset + +, de modo que +\begin_inset Formula $P\neq S$ +\end_inset + + y además +\begin_inset Formula $PS\neq PR$ +\end_inset + +, y podríamos tomar +\begin_inset Formula $S$ +\end_inset + + en vez de +\begin_inset Formula $R$ +\end_inset + +. + Ahora tomamos +\begin_inset Formula $QR$ +\end_inset + + que, por el axioma 4, contiene un tercer punto +\begin_inset Formula $T\neq Q,R$ +\end_inset + +, de modo que +\begin_inset Formula $P\neq T$ +\end_inset + + (si fuera +\begin_inset Formula $P=T$ +\end_inset + + se tendría +\begin_inset Formula $PQ=PR\#$ +\end_inset + +) y +\begin_inset Formula $PT\neq PQ,PR$ +\end_inset + + (si fuera, por ejemplo, +\begin_inset Formula $PT=PQ$ +\end_inset + +, se tendría +\begin_inset Formula $PQ=TQ=TR=QR\#$ +\end_inset + +). + Por tanto, +\begin_inset Formula $\ell:=PQ$ +\end_inset + +, +\begin_inset Formula $m:=PT$ +\end_inset + + y +\begin_inset Formula $n:=PR$ +\end_inset + + cumplen las condiciones. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $\pi=({\cal P},{\cal L},\epsilon)$ +\end_inset + + y +\begin_inset Formula $\pi'=({\cal P}',{\cal L}',\epsilon')$ +\end_inset + + dos planos proyectivos, un +\series bold +isomorfismo +\series default + de +\begin_inset Formula $\pi$ +\end_inset + + a +\begin_inset Formula $\pi'$ +\end_inset + + es un par +\begin_inset Formula $(f:{\cal P}\rightarrow{\cal P}',f':{\cal L}\rightarrow{\cal L}')$ +\end_inset + + de biyecciones tal que +\begin_inset Formula $\forall P\in{\cal P},\ell\in{\cal L},(P\epsilon\ell\implies f(P)\epsilon'f'(\ell))$ +\end_inset + +. + Si existe, decimos que +\begin_inset Formula $\pi$ +\end_inset + + y +\begin_inset Formula $\pi'$ +\end_inset + + son +\series bold +isomorfos +\series default +, si y sólo si existe una biyección +\begin_inset Formula $f:{\cal P}\rightarrow{\cal P}'$ +\end_inset + + que lleva ternas de puntos alineados a ternas de puntos alineados. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Obvio. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dada una recta +\begin_inset Formula $\ell$ +\end_inset + +, por el axioma 4 existen tres puntos +\begin_inset Formula $P,Q,R$ +\end_inset + + distintos sobre la recta. + Definimos +\begin_inset Formula $f':{\cal L}\rightarrow{\cal L}'$ +\end_inset + + tal que +\begin_inset Formula $f'(\ell):=\overline{f(P)f(Q)}$ +\end_inset + +. + Para ver que está bien definida, sean +\begin_inset Formula $P',Q'\epsilon\ell$ +\end_inset + +, +\begin_inset Formula $P'\neq Q'$ +\end_inset + + con +\begin_inset Formula $\{P,Q\}\neq\{P',Q'\}$ +\end_inset + + (podemos suponer +\begin_inset Formula $P\neq P',Q'$ +\end_inset + + y +\begin_inset Formula $P'\neq P,Q$ +\end_inset + +). + Entonces +\begin_inset Formula $f'(\ell)=\overline{f(P')f(Q')}$ +\end_inset + +, pero como +\begin_inset Formula $P,Q,P',Q'$ +\end_inset + + están alineados, +\begin_inset Formula $f(P),f(Q),f(P'),f(Q')$ +\end_inset + + también lo están, y +\begin_inset Formula $\overline{f(P')f(Q')}=\overline{f(P)f(Q)}$ +\end_inset + +. + Sean +\begin_inset Formula $\ell:=\overline{PQ}$ +\end_inset + + y +\begin_inset Formula $R\epsilon\ell$ +\end_inset + +, entonces +\begin_inset Formula $f'(\ell)=\overline{f(P)f(Q)}$ +\end_inset + +, pero como +\begin_inset Formula $P,Q,R$ +\end_inset + + están alineados, +\begin_inset Formula $f(R)\epsilon'\overline{f(P)f(Q)}=f'(\ell)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Construcción de +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si en el espacio afín +\begin_inset Formula $\mathbb{A}:=\mathbb{A}(W)$ +\end_inset + + para cierto espacio vectorial +\begin_inset Formula $W$ +\end_inset + + definimos la relación de equivalencia +\begin_inset Formula $\ell\sim\ell':\iff\ell\parallel\ell'$ +\end_inset + +, entonces +\begin_inset Formula $\overline{\mathbb{A}}:=({\cal P}',{\cal L}',\in)$ +\end_inset + + con +\begin_inset Formula ${\cal P}':={\cal P}\cup({\cal L}/\sim)$ +\end_inset + + y +\begin_inset Formula ${\cal L}':=\{\ell\cup\{[\ell]\}\}_{\ell\in{\cal L}}\cup\{{\cal L}/\sim\}$ +\end_inset + + es un plano proyectivo al que llamamos +\series bold +extensión proyectiva +\series default + de +\begin_inset Formula $\mathbb{A}$ +\end_inset + +. + Llamamos +\series bold +puntos afines +\series default + a los de +\begin_inset Formula ${\cal P}$ +\end_inset + + y +\series bold +puntos del infinito +\series default + a los de +\begin_inset Formula ${\cal L}/\sim$ +\end_inset + +. + De igual modo, llamamos +\series bold +rectas extendidas +\series default + a las +\begin_inset Formula $\overline{\ell}:=\ell\cup\{[\ell]\}$ +\end_inset + + y +\series bold +recta del infinito +\series default + a +\begin_inset Formula $\ell_{\infty}:={\cal L}/\sim$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado el +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $W\equiv\mathbb{K}^{3}$ +\end_inset + +, si +\begin_inset Formula ${\cal P}(W):=\{\text{rectas vectoriales de }W\}$ +\end_inset + + y +\begin_inset Formula ${\cal L}(W):=\{\text{planos vectoriales de }W\}$ +\end_inset + +, entonces +\begin_inset Formula $({\cal P}(W),{\cal L}(W),\subseteq)$ +\end_inset + + es un plano proyectivo. + Llamamos +\series bold +plano proyectivo en +\begin_inset Formula $\mathbb{K}$ +\end_inset + + +\series default + a +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K}):=({\cal P}(\mathbb{K}^{3}),{\cal L}(\mathbb{K}^{3}),\subseteq)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $<\vec{v}>\neq<\vec{w}>\implies\exists!\pi\in{\cal L}(W):<\vec{v}>,<\vec{w}>\subseteq\pi$ +\end_inset + +: +\begin_inset Formula $\vec{v}$ +\end_inset + + y +\begin_inset Formula $\vec{w}$ +\end_inset + + son LI, luego necesariamente +\begin_inset Formula $\pi=<\vec{v},\vec{w}>$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists\vec{u},\vec{v},\vec{w}\in W:\nexists\pi\in{\cal L}(W):<\vec{u},\vec{v},\vec{w}>\subseteq\pi$ +\end_inset + +: Basta tomar una base de +\begin_inset Formula $W$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists\vec{u}\in W:<\vec{u}>\subseteq\pi$ +\end_inset + +: Si +\begin_inset Formula $\pi=<\vec{v},\vec{w}>$ +\end_inset + +, basta tomar +\begin_inset Formula $\vec{v}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists\vec{u},\vec{v},\vec{w}\in W:(<\vec{u}>\neq<\vec{v}>\neq<\vec{w}>\neq<\vec{u}>\land<\vec{u},\vec{v},\vec{w}>\in\pi)$ +\end_inset + +: Si +\begin_inset Formula $\pi=<\vec{v},\vec{w}>$ +\end_inset + +, basta tomar +\begin_inset Formula $\vec{v}$ +\end_inset + +, +\begin_inset Formula $\vec{w}$ +\end_inset + + y +\begin_inset Formula $\vec{v}+\vec{w}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Dado un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $W$ +\end_inset + + de dimensión 2, +\begin_inset Formula $\overline{\mathbb{A}(W)}$ +\end_inset + + es isomorfo a +\begin_inset Formula $\mathbb{P}(W\times\mathbb{K})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula ${\cal P}:=W\cup\{[\ell]\}_{\ell\text{ recta afín de }W}$ +\end_inset + + el conjunto de puntos de +\begin_inset Formula $\overline{\mathbb{A}(W)}$ +\end_inset + + y +\begin_inset Formula ${\cal P}':=\{\text{rectas vectoriales de }W\times\mathbb{K}\}$ +\end_inset + + el conjunto de puntos de +\begin_inset Formula $\mathbb{P}(W\times\mathbb{K})$ +\end_inset + +. + Sea +\begin_inset Formula $\sigma:{\cal P}\rightarrow{\cal P}'$ +\end_inset + + dada por +\begin_inset Formula $\sigma(u)=<(u,1)>\forall u\in W$ +\end_inset + + y +\begin_inset Formula $\sigma([<u>])=<(u,0)>\forall u\in W$ +\end_inset + +, una biyección cuya inversa viene dada por +\begin_inset Formula $\sigma^{-1}(<(u,0)>)=[<(u,0)>]\forall u\in W$ +\end_inset + + y +\begin_inset Formula $\sigma^{-1}(<(u,\lambda)>)=\frac{u}{\lambda}\forall u\in W,\lambda\neq0$ +\end_inset + +. + Veamos que lleva ternas de puntos alineados a ternas de puntos alineados: +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si los tres puntos son afines y suponemos +\begin_inset Formula $u_{1}\neq0,u_{2}$ +\end_inset + +, que estén alineados significa que +\begin_inset Formula $u_{2}=\lambda u_{1}$ +\end_inset + + y +\begin_inset Formula $u_{3}=\mu u_{1}$ +\end_inset + + para +\begin_inset Formula $\lambda\neq1$ +\end_inset + +. + Entonces +\begin_inset Formula $\sigma(u_{1})=<(u_{1},1)>$ +\end_inset + +, +\begin_inset Formula $\sigma(u_{2})=<(\lambda u_{1},1)>$ +\end_inset + + y +\begin_inset Formula $\sigma(u_{3})=<(\mu u_{1},1)>$ +\end_inset + +, pero +\begin_inset Formula $\frac{\lambda-\mu}{\lambda-1}(u_{1},1)+\frac{\mu-1}{\lambda-1}(\lambda u_{1},1)=(\mu u_{1},1)$ +\end_inset + +, luego las tres rectas se encuentran en un plano. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $u_{1}$ +\end_inset + + y +\begin_inset Formula $u_{2}$ +\end_inset + + son afines y +\begin_inset Formula $[<u_{3}>]$ +\end_inset + + es del infinito, que estén alineados significa que +\begin_inset Formula $u_{2}=u_{1}+\lambda u_{3}$ +\end_inset + +. + Entonces +\begin_inset Formula $\sigma(u_{1})=<(u_{1},1)>$ +\end_inset + +, +\begin_inset Formula $\sigma(u_{2})=<(u_{1}+\lambda u_{3},1)>$ +\end_inset + + y +\begin_inset Formula $\sigma(u_{3})=<(u_{3},0)>$ +\end_inset + +. + Pero +\begin_inset Formula $(u_{1},1)+\lambda(u_{3},0)=(u_{1}+\lambda_{3},1)$ +\end_inset + +, luego las tres rectas están en el mismo plano. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $u_{1}$ +\end_inset + + es afín y +\begin_inset Formula $[<u_{2}>],[<u_{3}>]$ +\end_inset + + son del infinito, que estén alineados significa que +\begin_inset Formula $u_{2}=u_{3}$ +\end_inset + +, y entonces es claro que hay una recta que une +\begin_inset Formula $\sigma(u_{1})$ +\end_inset + + con +\begin_inset Formula $\sigma([<u_{2}=u_{3}>])$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si los tres puntos son del infinito, siempre están alineados, pero entonces + para +\begin_inset Formula $i\in\{1,2,3\}$ +\end_inset + +, +\begin_inset Formula $\sigma([<u_{i}>])=<(u_{i},0)>\in W\times\{0\}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Referencias proyectivas +\end_layout + +\begin_layout Standard +Tres puntos +\begin_inset Formula $P,Q,R\in\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + son ( +\series bold +proyectivamente +\series default +) +\series bold + independientes +\series default + si los vectores que los representan forman una base de +\begin_inset Formula $\mathbb{K}^{3}$ +\end_inset + +. + Una +\series bold +referencia proyectiva +\series default + o +\series bold +referencial proyectivo +\series default + en +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + es una cuaterna +\begin_inset Formula ${\cal R}:=(P,Q,R,U)$ +\end_inset + + de puntos tales que tres puntos cualesquiera de ellos son independientes. +\end_layout + +\begin_layout Standard +Todo referencial proyectivo de +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + admite una base +\begin_inset Formula ${\cal B}:=(v_{1},v_{2},v_{3})$ +\end_inset + + de +\begin_inset Formula $\mathbb{K}^{3}$ +\end_inset + + tal que +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $P=<v_{1}>$ +\end_inset + +, +\begin_inset Formula $Q=<v_{2}>$ +\end_inset + +, +\begin_inset Formula $R=<v_{3}>$ +\end_inset + + y +\begin_inset Formula $U=<v_{1}+v_{2}+v_{3}>$ +\end_inset + +, única salvo multiplicación simultánea de los 3 vectores por un escalar + no nulo. + A esta base la llamamos +\series bold +base asociada +\series default + al referencial +\begin_inset Formula ${\cal R}$ +\end_inset + +, y el punto +\begin_inset Formula $U$ +\end_inset + + es el +\series bold +punto unidad +\series default + del referencial. + +\series bold +Demostración: +\series default + +\begin_inset Formula $<v_{1}>,<v_{2}>,<v_{3}>$ +\end_inset + + son no alineados en +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + si y sólo si +\begin_inset Formula $(v_{1},v_{2},v_{3})$ +\end_inset + + es una base. + Entonces, si +\begin_inset Formula $P=:<u_{1}>$ +\end_inset + +, +\begin_inset Formula $Q=:<u_{2}>$ +\end_inset + + y +\begin_inset Formula $R=:<u_{3}>$ +\end_inset + +, podemos escribir +\begin_inset Formula $U=:<u>$ +\end_inset + + con +\begin_inset Formula $u:=\alpha_{1}u_{1}+\alpha_{2}u_{2}+\alpha_{3}u_{3}$ +\end_inset + + con +\begin_inset Formula $(\alpha_{1},\alpha_{2},\alpha_{3})\neq(0,0,0)$ +\end_inset + +. + Entonces hacemos +\begin_inset Formula $v_{i}:=\alpha_{i}u_{i}$ +\end_inset + + para +\begin_inset Formula $i\in\{1,2,3\}$ +\end_inset + +, y sabemos que +\begin_inset Formula $\alpha_{1},\alpha_{2},\alpha_{3}\neq0$ +\end_inset + +, pues si fuera algún +\begin_inset Formula $\alpha_{i}=0$ +\end_inset + +, +\begin_inset Formula $u$ +\end_inset + + sería linealmente dependiente con +\begin_inset Formula $u_{j}$ +\end_inset + + y +\begin_inset Formula $u_{k}$ +\end_inset + + para +\begin_inset Formula $j,k\neq i$ +\end_inset + + y serían alineados, luego +\begin_inset Formula $(v_{1},v_{2},v_{3})$ +\end_inset + + es una base que satisface las condiciones. + Ahora bien, si existe +\begin_inset Formula ${\cal B}'=(v'_{1},v'_{2},v'_{3})$ +\end_inset + + que también satisface las condiciones, necesariamente +\begin_inset Formula $<v'_{1}>=P=<v_{1}>$ +\end_inset + + y por tanto +\begin_inset Formula $v'_{1}=\lambda_{1}v_{1}$ +\end_inset + + para algún +\begin_inset Formula $\lambda_{1}\neq0$ +\end_inset + +, y lo mismo sucede con +\begin_inset Formula $v'_{2}$ +\end_inset + + y +\begin_inset Formula $v'_{3}$ +\end_inset + +, pero entonces +\begin_inset Formula $<v'_{1}+v'_{2}+v'_{3}>=<\lambda_{1}v'_{1}+\lambda_{2}v'_{2}+\lambda_{3}v'_{3}>=U=<v_{1}+v_{2}+v_{3}>$ +\end_inset + +, y es claro que +\begin_inset Formula $\lambda_{1}=\lambda_{2}=\lambda_{3}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $P\in\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + +, decimos que sus +\series bold +coordenadas homogéneas +\series default + respecto a la base +\begin_inset Formula ${\cal B}$ +\end_inset + + a +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +so +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +cia +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +da al referencial +\begin_inset Formula ${\cal R}$ +\end_inset + + son +\begin_inset Formula $x,y,z$ +\end_inset + + ( +\begin_inset Formula $P:=[x,y,z]$ +\end_inset + +) si +\begin_inset Formula $P=:<\vec{u}>$ +\end_inset + + con +\begin_inset Formula $[\vec{u}]_{{\cal B}}=(x,y,z)$ +\end_inset + +. + Estas son únicas salvo multiplicación de las tres por un escalar no nulo. + Tres puntos de coordenadas homogéneas +\begin_inset Formula $[a,b,c]$ +\end_inset + +, +\begin_inset Formula $[d,e,f]$ +\end_inset + + y +\begin_inset Formula $[g,h,i]$ +\end_inset + + son proyectivamente independientes si y sólo si +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +a & b & c\\ +d & e & f\\ +g & h & i +\end{array}\right|\neq0 +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $[a,b,c]^{*}$ +\end_inset + + a la recta en +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + dada por +\begin_inset Formula $ax+by+cz=0$ +\end_inset + +. + Las rectas +\begin_inset Formula $\ell:=[a_{1},b_{1},c_{1}]^{*}$ +\end_inset + +, +\begin_inset Formula $m:=[a_{2},b_{2},c_{2}]^{*}$ +\end_inset + + y +\begin_inset Formula $n:=[a_{3},b_{3},c_{3}]^{*}$ +\end_inset + + son +\series bold +congruentes +\series default + (se cortan) si y sólo si +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +a_{1} & b_{1} & c_{1}\\ +a_{2} & b_{2} & c_{2}\\ +a_{3} & b_{3} & c_{3} +\end{array}\right|=0 +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula +\begin{multline*} +\exists P\in\ell,m,n\iff\exists(x_{0},y_{0},x_{0})\neq0:\forall i\in\{1,2,3\},a_{i}x_{0}+b_{i}y_{0}+c_{i}z_{0}=0\iff\\ +\iff\dim\left\{ \left(\begin{array}{ccc} +a_{1} & b_{1} & c_{1}\\ +a_{2} & b_{2} & c_{2}\\ +a_{3} & b_{3} & c_{3} +\end{array}\right)\left(\begin{array}{c} +x\\ +y\\ +z +\end{array}\right)=\left(\begin{array}{c} +0\\ +0\\ +0 +\end{array}\right)\right\} >0 +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Section +Teoremas de Desargues y Pappus +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Desargues +\series default + afirma que, dados dos triángulos +\begin_inset Formula $ABC$ +\end_inset + + y +\begin_inset Formula $A'B'C'$ +\end_inset + + sin vértices ni lados comunes, si las rectas que unen vértices correspondientes + ( +\begin_inset Formula $AA'$ +\end_inset + +, +\begin_inset Formula $BB'$ +\end_inset + + y +\begin_inset Formula $CC'$ +\end_inset + +) se cortan en un punto, los puntos de corte de lados correspondientes están + alineados. + Un plano proyectivo es +\series bold +desarguesiano +\series default + si satisface este teorema. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Pappus +\series default + afirma que, dados tres puntos distintos +\begin_inset Formula $A,B,C$ +\end_inset + + en una recta y +\begin_inset Formula $A',B',C'$ +\end_inset + + en otra, los puntos +\begin_inset Formula $L\in AB'\cap A'B$ +\end_inset + +, +\begin_inset Formula $M\in AC'\cap A'C$ +\end_inset + + y +\begin_inset Formula $N\in BC'\cap B'C$ +\end_inset + + están alineados. + Un plano proyectivo es +\series bold +papiano +\series default + si satisface este teorema. +\end_layout + +\begin_layout Standard +Un plano proyectivo +\begin_inset Formula $\pi$ +\end_inset + + es papiano y desarguesiano si y sólo si es isomorfo a +\begin_inset Formula $\mathbb{P}(V)$ +\end_inset + + para algún +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial tridimensional, si y sólo si es isomorfo a +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + +. + En tal caso, el cuerpo +\begin_inset Formula $\mathbb{K}$ +\end_inset + + de las dos últimas condiciones es el mismo y está unívocamente determinado + por +\begin_inset Formula $\pi$ +\end_inset + + salvo isomorfismo. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\iff3]$ +\end_inset + + Sea +\begin_inset Formula ${\cal B}$ +\end_inset + + una base del +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio tridimensional +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $[\cdot]_{{\cal B}}:V\longrightarrow\mathbb{K}^{3}$ +\end_inset + + define un isomorfismo entre los puntos de +\begin_inset Formula $\mathbb{P}(V)$ +\end_inset + + y los de +\begin_inset Formula $\mathbb{P}(\mathbb{K}^{3})=\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $3\implies1]$ +\end_inset + + Probemos el teorema de Desargues. + Sean +\begin_inset Formula $O:=[\vec{o}]$ +\end_inset + + el punto de corte entre las tres rectas, +\begin_inset Formula $A:=[\vec{a}]$ +\end_inset + +, +\begin_inset Formula $B:=[\vec{b}]$ +\end_inset + + y +\begin_inset Formula $C:=[\vec{c}]$ +\end_inset + + con +\begin_inset Formula $\vec{a},\vec{b},\vec{c},\vec{o}\neq0$ +\end_inset + +, como +\begin_inset Formula $O,A,A'$ +\end_inset + + están alineados, debe ser +\begin_inset Formula $A'=[\lambda\vec{o}+\mu\vec{a}]$ +\end_inset + + con +\begin_inset Formula $\lambda\neq0$ +\end_inset + + (si fuera +\begin_inset Formula $\lambda=0$ +\end_inset + + sería +\begin_inset Formula $A=A'$ +\end_inset + + y +\begin_inset Formula $AA'$ +\end_inset + + no tendría sentido) y, dividiendo por +\begin_inset Formula $\lambda$ +\end_inset + +, +\begin_inset Formula $A'=:[\vec{o}+\alpha\vec{a}]$ +\end_inset + +. + Análogamente +\begin_inset Formula $B'=:[\vec{o}+\beta\vec{b}]$ +\end_inset + + y +\begin_inset Formula $C'=:[\vec{o}+\gamma\vec{c}]$ +\end_inset + +. + Como +\begin_inset Formula $\alpha\vec{a}-\beta\vec{b}=(\vec{o}+\alpha\vec{a})-(\vec{o}+\beta\vec{b})$ +\end_inset + +, tenemos que +\begin_inset Formula $AB\cap A'B'=\{[\alpha\vec{a}-\beta\vec{b}]\}$ +\end_inset + +, y del mismo modo +\begin_inset Formula $AC\cap A'C'=\{[\alpha\vec{a}-\gamma\vec{c}]\}$ +\end_inset + + y +\begin_inset Formula $BC\cap B'C'=\{[\beta\vec{b}-\gamma\vec{c}]\}$ +\end_inset + +. + Estos tres puntos están alineados, pues +\begin_inset Formula $(\alpha\vec{a}-\beta\vec{b})-(\alpha\vec{a}-\gamma\vec{c})+(\beta\vec{b}-\gamma\vec{c})=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para el teorema de Pappus, consideremos la referencia proyectiva +\begin_inset Formula ${\cal R}:=(A',A,B,B')$ +\end_inset + +, con lo que +\begin_inset Formula $A'=[1,0,0]$ +\end_inset + +, +\begin_inset Formula $A=[0,1,0]$ +\end_inset + +, +\begin_inset Formula $B=[0,0,1]$ +\end_inset + + y +\begin_inset Formula $B'=[1,1,1]$ +\end_inset + +. + Como +\begin_inset Formula $C\epsilon AB$ +\end_inset + +, debe ser +\begin_inset Formula $C=[0,\alpha,\beta]$ +\end_inset + + con +\begin_inset Formula $\alpha,\beta\neq0$ +\end_inset + +, luego +\begin_inset Formula $C=[0,1,c]$ +\end_inset + + para algún +\begin_inset Formula $c\neq0$ +\end_inset + +. + De forma parecida, +\begin_inset Formula $C'=[c',1,1]$ +\end_inset + +. + Entonces +\begin_inset Formula +\begin{eqnarray*} +AB':x=z & AC':x=c'z & BC':x=c'y\\ +A'B:y=0 & A'C:z=cy & B'C:(c-1)x-cy+z=0 +\end{eqnarray*} + +\end_inset + +de donde +\begin_inset Formula $AB'\cap A'B=\{[1,0,1]\}$ +\end_inset + +, +\begin_inset Formula $AC'\cap A'C=\{[cc',1,c]\}$ +\end_inset + + y +\begin_inset Formula $BC'\cap B'C=\{[c',1,c+c'-cc']\}$ +\end_inset + +, y los tres puntos están alineados porque +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +1 & 0 & 1\\ +cc' & 1 & c\\ +c' & 1 & c+c'-cc' +\end{array}\right|=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Ampliación proyectiva +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $\mathbb{K}[x_{1},\dots,x_{n}]$ +\end_inset + + al conjunto de polinomios de +\begin_inset Formula $n$ +\end_inset + + variables sobre +\begin_inset Formula $\mathbb{K}$ +\end_inset + +, y decimos que +\begin_inset Formula $F\in\mathbb{K}[x_{1},\dots,x_{n}]$ +\end_inset + + es +\series bold +homogéneo +\series default + si todos sus monomios tienen el mismo grado. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Dado +\begin_inset Formula $f\in\mathbb{K}[x_{1},\dots,x_{n}]$ +\end_inset + +, su +\series bold +homogeneización +\series default + es el polinomio homogéneo +\begin_inset Formula $f^{*}\in\mathbb{K}[x_{1},\dots,x_{n+1}]$ +\end_inset + + dado por +\begin_inset Formula $f^{*}(x_{1},\dots,x_{n+1})=x_{n+1}^{d}f(\frac{x_{1}}{x_{n+1}},\dots,\frac{x_{n}}{x_{n+1}})$ +\end_inset + +, siendo +\begin_inset Formula $d$ +\end_inset + + el grado de +\begin_inset Formula $f$ +\end_inset + +, es decir, el máximo de los grados de sus monomios. + La +\series bold +deshomogeneización +\series default + de +\begin_inset Formula $F\in\mathbb{K}[x_{1},\dots,x_{n+1}]$ +\end_inset + + es +\begin_inset Formula $F_{*}\in\mathbb{K}[x_{1},\dots,x_{n}]$ +\end_inset + + dado por +\begin_inset Formula $F_{*}(x_{1},\dots,x_{n})=F(x_{1},\dots,x_{n},1)$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $f\in\mathbb{K}[x_{1},\dots,x_{n}]$ +\end_inset + +, +\begin_inset Formula $(f^{*})_{*}=f$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $f(x_{1},\dots,x_{n}):=\sum_{i=1}^{k}\prod_{j=1}^{d_{i}}x_{a_{ij}}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f^{*}(x_{1},\dots,x_{n+1})=\sum_{i=1}^{k}x_{n+1}^{\max\{d_{i}\}}\prod_{j=1}^{d_{i}}\frac{x_{a_{ij}}}{x_{n+1}}=\sum_{i=1}^{k}x_{n+1}^{\max\{d_{i}\}-d_{i}}\prod_{j=1}^{d_{i}}x_{a_{ij}} +\] + +\end_inset + + y +\begin_inset Formula $(f^{*})_{*}(x_{1},\dots,x_{n})=\sum_{i=1}^{k}\prod_{j=1}^{d_{i}}x_{a_{ij}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $F\in\mathbb{K}[x_{1},\dots,x_{n+1}]$ +\end_inset + + homogéneo, +\begin_inset Formula $F=x_{n+1}^{k}(F_{*})^{*}$ +\end_inset + +, siendo +\begin_inset Formula $k$ +\end_inset + + la mayor potencia de +\begin_inset Formula $x_{n+1}$ +\end_inset + + que divide a todos los monomios de +\begin_inset Formula $F$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $F(x_{1},\dots,x_{n+1}):=\sum_{i=1}^{k}x_{n+1}^{b_{i}}\prod_{j=1}^{d-b_{i}}x_{a_{ij}}$ +\end_inset + +, entonces +\begin_inset Formula $F_{*}(x_{1},\dots,x_{n})=\sum_{i=1}^{k}\prod_{j=1}^{d-b_{i}}x_{a_{ij}}$ +\end_inset + + y +\begin_inset Formula +\begin{eqnarray*} +(F_{*})^{*}(x_{1},\dots,x_{n+1}) & = & \sum_{i=1}^{k}x_{n+1}^{\max\{d-b_{i}\}}\prod_{j=1}^{d-b_{i}}\frac{x_{a_{ij}}}{x_{n+1}}=\sum_{i=1}^{k}x_{n+1}^{d-\min\{b_{i}\}-d+b_{i}}\prod_{j=1}^{d-b_{i}}x_{a_{ij}}\\ + & = & \frac{1}{x_{n+1}^{\min\{b_{i}\}}}\sum_{i=1}^{k}x_{n+1}^{b_{i}}\prod_{j=1}^{d-b_{i}}x_{a_{ij}}=\frac{F}{x_{n+1}^{\min\{b_{i}\}}} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f\in\mathbb{K}[x,y]$ +\end_inset + + y +\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):f(x,y)=0\}$ +\end_inset + +, llamamos +\series bold +ampliación proyectiva +\series default + o +\series bold +completación proyectiva +\series default + de +\begin_inset Formula ${\cal L}$ +\end_inset + + a +\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K}):f^{*}(x,y,z)=0\}$ +\end_inset + +, y para +\begin_inset Formula $\hat{{\cal L}}\subseteq\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + +, la +\series bold +parte afín +\series default + de +\begin_inset Formula $\hat{{\cal L}}$ +\end_inset + + es +\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):<(x,y,1)>\in\hat{{\cal L}}\}$ +\end_inset + +. + Vemos que para +\begin_inset Formula $F\in\mathbb{K}[x,y,z]$ +\end_inset + + homogéneo y +\begin_inset Formula $\hat{{\cal L}}:=\{F(x,y,z)=0\}$ +\end_inset + +, +\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y):F(x,y,1)=0\}=\{(x,y):F_{*}(x,y)=0\}$ +\end_inset + +. + Entonces +\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>:(F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>:F(x,y,0)=0\}$ +\end_inset + +, y si +\begin_inset Formula $F$ +\end_inset + + no es divisible por +\begin_inset Formula $z$ +\end_inset + + es +\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\hat{{\cal L}}$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
