diff options
Diffstat (limited to 'aalg/n4.lyx')
| -rw-r--r-- | aalg/n4.lyx | 4335 |
1 files changed, 4335 insertions, 0 deletions
diff --git a/aalg/n4.lyx b/aalg/n4.lyx new file mode 100644 index 0000000..5bd177f --- /dev/null +++ b/aalg/n4.lyx @@ -0,0 +1,4335 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\usepackage{tikz} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +forma bilineal +\series default + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + + es una aplicación +\begin_inset Formula $\langle\cdot\rangle:V\times V\rightarrow\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula $\forall u,u_{1},u_{2},v,v_{1},v_{2}\in V,\lambda\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\langle u_{1}+u_{2},v\rangle=\langle u_{1},v\rangle+\langle u_{2},v\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\langle u,v_{1}+v_{2}\rangle=\langle u,v_{1}\rangle+\langle u,v_{2}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\langle\lambda u,v\rangle=\langle u,\lambda v\rangle=\lambda\langle u,v\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una forma bilineal es +\series bold +simétrica +\series default + si +\begin_inset Formula $\forall u,v\in V,\langle u,v\rangle=\langle v,u\rangle$ +\end_inset + +, y es +\series bold +alternada +\series default + si +\begin_inset Formula $\forall u\in V,\langle u,u\rangle=0$ +\end_inset + +. + En +\begin_inset Formula $\mathbb{K}=\mathbb{R}$ +\end_inset + +, una forma bilineal simétrica tal que +\begin_inset Formula $\forall u\neq0,\langle u,u\rangle>0$ +\end_inset + + es un +\series bold +producto escalar +\series default +. + Llamamos +\series bold +espacio bilineal +\series default + o +\series bold +cuadrático +\series default + a un par +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + formado por un espacio vectorial +\begin_inset Formula $V$ +\end_inset + + y una forma bilineal simétrica +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en él. + Llamamos +\begin_inset Formula ${\cal B}(V)$ +\end_inset + + al conjunto de formas bilineales simétricas en +\begin_inset Formula $V$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + una forma bilineal sobre el espacio vectorial +\begin_inset Formula $V$ +\end_inset + + con base +\begin_inset Formula $(e_{1},\dots,e_{n})$ +\end_inset + + y +\begin_inset Formula $A:=(a_{ij}:=\langle e_{i},e_{j}\rangle)\in{\cal M}_{n}(\mathbb{K})$ +\end_inset + +, entonces si +\begin_inset Formula $x=\sum x_{i}e_{i}$ +\end_inset + + e +\begin_inset Formula $y=\sum y_{i}e_{i}$ +\end_inset + +, se tiene +\begin_inset Formula +\[ +\langle x,y\rangle=\langle\sum_{i}x_{i}e_{i},\sum_{j}y_{j}e_{j}\rangle=\sum_{i,j}\langle x_{i}e_{i},y_{j}e_{j}\rangle=\sum_{i,j}x_{i}y_{j}a_{ij} +\] + +\end_inset + +y por tanto +\begin_inset Formula $\langle X,Y\rangle=X^{t}AY$ +\end_inset + +. + La matriz +\begin_inset Formula $A$ +\end_inset + + es simétrica si +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + lo es, y se llama +\series bold +matriz de la forma bilineal +\series default + en la base dada. +\end_layout + +\begin_layout Standard +Un +\series bold +forma cuadrática +\series default + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + + es una aplicación +\begin_inset Formula $q:V\rightarrow\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula $\forall u\in V,\lambda\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $q(\lambda u)=\lambda^{2}q(u)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\langle\cdot\rangle:V\times V\rightarrow K$ +\end_inset + + dada por +\begin_inset Formula $\langle u,v\rangle:=\frac{1}{2}(q(u+v)-q(u)-q(v))$ +\end_inset + + es una forma bilineal simétrica en +\begin_inset Formula $V$ +\end_inset + +, la +\series bold +forma bilineal asociada +\series default + o +\series bold +forma polar +\series default + de +\begin_inset Formula $q$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula ${\cal Q}(V)$ +\end_inset + + al conjunto de formas cuadráticas en +\begin_inset Formula $V$ +\end_inset + +. + La aplicación +\begin_inset Formula ${\cal Q}(V)\rightarrow{\cal B}(V)$ +\end_inset + + que asocia a cada forma cuadrática su forma polar es biyectiva y su inversa + asocia a cada forma bilineal simétrica la forma cuadrática dada por +\begin_inset Formula $q(u):=\langle u,u\rangle$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\langle\cdot\rangle\in{\cal B}(V)$ +\end_inset + + y +\begin_inset Formula $q(u):=\langle u,u\rangle$ +\end_inset + +, es claro que +\begin_inset Formula $q(\lambda u)=\lambda^{2}q(u)$ +\end_inset + +. + Por otra parte, +\begin_inset Formula +\begin{multline*} +\frac{1}{2}(q(u+v)-q(u)-q(v))=\frac{1}{2}(\langle u+v,u+v\rangle-\langle u,u\rangle-\langle v,v\rangle)=\frac{1}{2}\cdot2\langle u,v\rangle=\langle u,v\rangle +\end{multline*} + +\end_inset + +Sean ahora +\begin_inset Formula $q$ +\end_inset + + una forma cuadrática, +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + su forma bilineal asociada y +\begin_inset Formula $q'\in{\cal Q}(V)$ +\end_inset + + dada por +\begin_inset Formula $q'(u)=\langle u,u\rangle$ +\end_inset + +, +\begin_inset Formula $q'(u)=\langle u,u\rangle=\frac{1}{2}(q(2u)-q(u)-q(u))=\frac{1}{2}(4q(u)-2q(u))=q(u)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Esta correspondencia permite asociar una matriz +\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{K})$ +\end_inset + + a una forma cuadrática +\begin_inset Formula $q$ +\end_inset + + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial de dimensión +\begin_inset Formula $n<+\infty$ +\end_inset + +, pues si +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es la forma polar de +\begin_inset Formula $q$ +\end_inset + +, +\begin_inset Formula $q(u)=\langle u,u\rangle=u^{t}Au$ +\end_inset + +. +\end_layout + +\begin_layout Section +Cambios de base +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + un espacio bilineal, +\begin_inset Formula ${\cal C}:=(u_{1},\dots,u_{n})$ +\end_inset + + y +\begin_inset Formula ${\cal B}:=(v_{1},\dots,v_{n})$ +\end_inset + + bases de +\begin_inset Formula $V$ +\end_inset + + donde +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + tiene matrices respectivas +\begin_inset Formula $A:=(a_{ij})$ +\end_inset + + y +\begin_inset Formula $B:=(b_{ij})$ +\end_inset + +, +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + las matrices columna de las coordenadas de dos vectores en la base +\begin_inset Formula ${\cal C}$ +\end_inset + +, +\begin_inset Formula $X'$ +\end_inset + + e +\begin_inset Formula $Y'$ +\end_inset + + las de los mismos vectores en la base +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula $P$ +\end_inset + + la matriz de cambio de base de +\begin_inset Formula ${\cal B}$ +\end_inset + + a +\begin_inset Formula ${\cal C}$ +\end_inset + +. + Entonces +\begin_inset Formula $X=PX'$ +\end_inset + + e +\begin_inset Formula $Y=PY'$ +\end_inset + +, luego +\begin_inset Formula $X^{t}AY=(PX')^{t}A(PY')=(X')^{t}(P^{t}AP)Y'$ +\end_inset + + y por tanto +\begin_inset Formula $B=P^{t}AP$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Dos matrices +\begin_inset Formula $A,B\in{\cal M}_{n}(\mathbb{K})$ +\end_inset + + son +\series bold +congruentes +\series default + si existe una matriz invertible +\begin_inset Formula $P$ +\end_inset + + tal que +\begin_inset Formula $B=P^{t}AP$ +\end_inset + +, y escribimos +\begin_inset Formula $A\sim B$ +\end_inset + +. + Esta es una relación de equivalencia. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{AlgL} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A,B\in M_{n}(K)$ +\end_inset + + son +\series bold +semejantes +\series default + si +\begin_inset Formula $\exists P\in M_{n}(K):B=P^{-1}AP$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dos formas bilineales +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + en +\begin_inset Formula $V'$ +\end_inset + + son +\series bold +equivalentes +\series default +, escrito +\begin_inset Formula $\langle\cdot\rangle\sim\langle\cdot\rangle'$ +\end_inset + +, si existen bases respectivas de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $V'$ +\end_inset + + respecto de las cuales las formas bilineales tiene la misma matriz asociada. +\end_layout + +\begin_layout Standard +Dos espacios bilineales +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + y +\begin_inset Formula $(V',\langle\cdot\rangle')$ +\end_inset + + son +\series bold +isométricos +\series default + si existe un isomorfismo +\begin_inset Formula $f:V\rightarrow V'$ +\end_inset + + tal que +\begin_inset Formula $\forall u,v\in V,\langle u,v\rangle=\langle f(u),f(v)\rangle'$ +\end_inset + +, y decimos que +\begin_inset Formula $f$ +\end_inset + + es una +\series bold +isometría +\series default +. +\end_layout + +\begin_layout Standard +Dados dos espacios bilineales +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + y +\begin_inset Formula $(V',\langle\cdot\rangle')$ +\end_inset + +, si +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + son bases respectivas de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $V'$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $A'$ +\end_inset + + son las matrices respectivas de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + respecto de +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + +, entonces +\begin_inset Formula +\[ +A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangle),(V',\langle\cdot\rangle')\text{ isométricos} +\] + +\end_inset + + +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\implies2]$ +\end_inset + + Existe +\begin_inset Formula $P$ +\end_inset + + invertible tal que +\begin_inset Formula $A'=P^{t}AP$ +\end_inset + +, luego en la base +\begin_inset Formula ${\cal B}''$ +\end_inset + + en la que +\begin_inset Formula $P$ +\end_inset + + es matriz de cambio de +\begin_inset Formula ${\cal B}''$ +\end_inset + + a +\begin_inset Formula ${\cal B}$ +\end_inset + +, +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + tiene matriz +\begin_inset Formula $A'$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\implies3]$ +\end_inset + + Si +\begin_inset Formula ${\cal C}=:(v_{1},\dots,v_{n})$ +\end_inset + + y +\begin_inset Formula ${\cal C}'=:(v'_{1},\dots,v'_{n})$ +\end_inset + + son bases en las que +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + tienen la misma matriz asociada +\begin_inset Formula $C:=(c_{ij})$ +\end_inset + +, entonces +\begin_inset Formula $\langle v_{i},v_{j}\rangle=c_{ij}=\langle v'_{i},v'_{j}\rangle$ +\end_inset + +, luego el isomorfismo +\begin_inset Formula $v_{i}\mapsto v'_{i}$ +\end_inset + + es una isometría. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $3\implies1]$ +\end_inset + + Sea +\begin_inset Formula $f:V\rightarrow V'$ +\end_inset + + una isometría y +\begin_inset Formula ${\cal B}:=(v_{1},\dots,v_{n})$ +\end_inset + +, entonces +\begin_inset Formula ${\cal B}':=(f(v_{1}),\dots,f(v_{n}))$ +\end_inset + + es una base de +\begin_inset Formula $V'$ +\end_inset + + y, como +\begin_inset Formula $\langle v_{i},v_{j}\rangle=\langle f(v_{i}),f(v_{j})\rangle'=:c_{ij}$ +\end_inset + +, ambas formas bilineales tienen la misma matriz +\begin_inset Formula $C:=(c_{ij})$ +\end_inset + +, y entonces +\begin_inset Formula $A\sim C\sim A'$ +\end_inset + +. +\end_layout + +\begin_layout Section +Ortogonalidad +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + un espacio bilineal y +\begin_inset Formula $E$ +\end_inset + + un subespacio de +\begin_inset Formula $V$ +\end_inset + +, llamamos +\series bold +subespacio ortogonal +\series default + a +\begin_inset Formula $E$ +\end_inset + + al subespacio +\begin_inset Formula $E^{\bot}:=\{v\in V:\forall e\in E,\langle v,e\rangle=0\}$ +\end_inset + +. + Dos vectores +\begin_inset Formula $u,v\in V$ +\end_inset + + son +\series bold +ortogonales +\series default +, +\series bold +perpendiculares +\series default + o +\series bold +conjugados +\series default + si +\begin_inset Formula $\langle u,v\rangle=0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +radical +\series default + de +\begin_inset Formula $V$ +\end_inset + + a +\begin_inset Formula $Rad(V):=V^{\bot}$ +\end_inset + +. + Una forma bilineal simétrica +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en +\begin_inset Formula $V$ +\end_inset + + es +\series bold +no degenerada +\series default + si +\begin_inset Formula $Rad(V)=0$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + es la matriz asociada a +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en la base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es no degenerada si y sólo si +\begin_inset Formula $|A|\neq0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula ${\cal B}=:(u_{1},\dots,u_{n})$ +\end_inset + +, un vector +\begin_inset Formula +\begin{multline*} +u:=\sum\alpha_{i}u_{i}\in Rad(V)\iff\langle u,v\rangle=0\forall v\in V\iff\langle u,u_{i}\rangle=0\forall i\iff\\ +\iff\forall i,\left(\begin{array}{ccccc} +0 & \cdots & \overset{\underset{\downarrow}{i}}{1} & \cdots & 0\end{array}\right)A\left(\begin{array}{c} +x_{1}\\ +\vdots\\ +x_{n} +\end{array}\right)=0 +\end{multline*} + +\end_inset + +Por tanto el radical está formado por los vectores cuyas coordenadas constituyen + el núcleo de +\begin_inset Formula $A$ +\end_inset + +, que se reduce al vector 0 si y sólo si +\begin_inset Formula $|A|\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un vector es +\series bold +isótropo +\series default + si +\begin_inset Formula $\langle u,u\rangle=0$ +\end_inset + +, y un subespacio +\begin_inset Formula $U\leq V$ +\end_inset + + es ( +\series bold +totalmente +\series default +) +\series bold +isótropo +\series default + si todo vector de +\begin_inset Formula $U$ +\end_inset + + es isótropo, y es +\series bold +anisótropo +\series default + si no contiene vectores isótropos no nulos. + Si todos los vectores son isótropos, entonces +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es idénticamente nula, pues en tal caso +\begin_inset Formula $0=\langle u+v,u+v\rangle=\langle u,u\rangle+\langle v,v\rangle+2\langle u,v\rangle=2\langle u,v\rangle$ +\end_inset + + para cualesquiera +\begin_inset Formula $u,v\in V$ +\end_inset + +. +\end_layout + +\begin_layout Section +Diagonalización +\end_layout + +\begin_layout Standard +Dado un espacio bilineal +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + y +\begin_inset Formula $E\leq V$ +\end_inset + +, si +\begin_inset Formula $\langle\cdot\rangle|_{E}$ +\end_inset + + es no degenerada entonces +\begin_inset Formula $V=E\oplus E^{\bot}$ +\end_inset + +. + +\series bold +Demostración: +\series default + La suma es directa porque +\begin_inset Formula $E\cap E^{\bot}=Rad(E)=0$ +\end_inset + +. + Sea +\begin_inset Formula ${\cal B}:=(e_{1},\dots,e_{m})$ +\end_inset + + una base de +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $A\in{\cal M}_{m}(\mathbb{R})$ +\end_inset + + la matriz de +\begin_inset Formula $\langle\cdot\rangle|_{E}$ +\end_inset + +, entonces +\begin_inset Formula $|A|\neq0$ +\end_inset + + y, dado +\begin_inset Formula $u\in V$ +\end_inset + +, el sistema +\begin_inset Formula +\[ +A\left(\begin{array}{c} +x_{1}\\ +\vdots\\ +x_{m} +\end{array}\right)=\left(\begin{array}{c} +\langle u,e_{1}\rangle\\ +\vdots\\ +\langle u,e_{m}\rangle +\end{array}\right) +\] + +\end_inset + +tiene solución única y +\begin_inset Formula $x:=\sum x_{i}e_{i}\in E$ +\end_inset + +. + Sea +\begin_inset Formula $v:=u-x$ +\end_inset + +, +\begin_inset Formula $v\in E^{\bot}\iff\forall i,\langle e_{i},v\rangle=0$ +\end_inset + +, pero +\begin_inset Formula $\langle e_{i},v\rangle=\langle e_{i},u\rangle-\sum_{j}x_{j}\langle e_{i},e_{j}\rangle=\langle e_{i},u\rangle-\sum_{j}a_{ij}x_{j}=0$ +\end_inset + +, luego todo vector +\begin_inset Formula $u\in V$ +\end_inset + + se puede descomponer en un vector +\begin_inset Formula $x\in E$ +\end_inset + + y otro +\begin_inset Formula $v\in E^{\bot}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, para todo espacio bilineal +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + existe una base ortogonal, y por tanto la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es siempre de la forma +\begin_inset Formula $\text{diag}(d_{1},\dots,d_{m},0,\dots,0)$ +\end_inset + + (matriz diagonal) con +\begin_inset Formula $d_{i}\neq0\forall i\in\{1,\dots,m\}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $V$ +\end_inset + + tiene dimensión 1 toda base es ortogonal. + Supongamos que la dimensión de +\begin_inset Formula $V$ +\end_inset + + es +\begin_inset Formula $n>1$ +\end_inset + + y el teorema se cumple para dimensión +\begin_inset Formula $n-1$ +\end_inset + +. + Si +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es nula, toda base es ortogonal. + De lo contrario existe un vector +\begin_inset Formula $e_{1}$ +\end_inset + + no isótropo y, si +\begin_inset Formula $E:=<e_{1}>$ +\end_inset + +, +\begin_inset Formula $\langle\cdot\rangle|_{E}$ +\end_inset + + es no degenerada, por lo que tenemos +\begin_inset Formula $V=E\oplus E^{\bot}$ +\end_inset + + y, por la hipótesis de inducción, +\begin_inset Formula $E^{\bot}$ +\end_inset + + tiene una base +\begin_inset Formula $(e_{2},\dots,e_{n})$ +\end_inset + + ortogonal y la base +\begin_inset Formula $(e_{1},\dots,e_{n})$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A,B\in{\cal M}_{n}(\mathbb{K})$ +\end_inset + + son congruentes si y sólo si una se puede obtener de la otra por operaciones + elementales, las mismas por filas que por columnas. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Existe +\begin_inset Formula $P$ +\end_inset + + invertible tal que +\begin_inset Formula $P^{t}AP=B$ +\end_inset + +. + Al ser invertible debe ser producto de matrices elementales, +\begin_inset Formula $P^{t}=:E_{1}\cdots E_{k}$ +\end_inset + +, con lo que +\begin_inset Formula $B=E_{k}\cdots E_{1}AE_{1}^{t}\cdots E_{k}^{t}$ +\end_inset + +, pero la traspuesta de una matriz elemental que representa una operación + por filas representa la misma operación por columnas. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $B=E_{k}\cdots E_{1}AE_{1}^{t}\cdots E_{k}^{t}$ +\end_inset + +, basta tomar +\begin_inset Formula $P:=E_{1}^{t}\cdots E_{k}^{t}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, para obtener a partir de una matriz simétrica +\begin_inset Formula $A$ +\end_inset + + una matriz diagonal congruente: +\end_layout + +\begin_layout Standard + +\family sans +\begin_inset Box Frameless +position "t" +hor_pos "c" +has_inner_box 1 +inner_pos "t" +use_parbox 0 +use_makebox 0 +width "100col%" +special "none" +height "1in" +height_special "totalheight" +thickness "0.4pt" +separation "3pt" +shadowsize "4pt" +framecolor "black" +backgroundcolor "none" +status open + +\begin_layout Plain Layout + +\family sans +\series bold +operación +\series default + diagonalizar(var +\begin_inset Formula $A$ +\end_inset + +: +\begin_inset Formula ${\cal M}_{n}(\mathbb{K})$ +\end_inset + +) +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +si +\series default + +\begin_inset Formula $n>1$ +\end_inset + + +\series bold +y +\series default + +\begin_inset Formula $A\neq0$ +\end_inset + + +\series bold +entonces +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +si +\series default + la primera columna es no nula +\series bold +entonces +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +si +\series default + no hay ningún +\begin_inset Formula $i$ +\end_inset + + con +\begin_inset Formula $a_{ii}\neq0$ +\end_inset + + +\series bold +entonces +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Sumar a la fila +\begin_inset Formula $1$ +\end_inset + + la fila +\begin_inset Formula $i$ +\end_inset + +, para algún +\begin_inset Formula $i$ +\end_inset + + con +\begin_inset Formula $a_{i1}\neq0$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Sumar a la columna +\begin_inset Formula $1$ +\end_inset + + la columna +\begin_inset Formula $i$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +finsi +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Tomar +\begin_inset Formula $i$ +\end_inset + + con +\begin_inset Formula $a_{ii}\neq0$ +\end_inset + +; intercambiar filas 1 e +\begin_inset Formula $i$ +\end_inset + + y columnas 1 e +\begin_inset Formula $i$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Hacer ceros en la primera columna con operaciones fila +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Hacer las mismas operaciones columna +\begin_inset Formula $//$ +\end_inset + + +\emph on +Lo que hace ceros en la primera fila +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +finsi +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +diagonalizar(A[2..n,2..n]) +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +finsi +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para recordar los cambios, escribimos una matriz identidad al lado de +\begin_inset Formula $A$ +\end_inset + + y registramos en ella las operaciones elementales de filas, o bien las + de columnas. + La +\series bold +diagonalización por completación de cuadrados +\series default + es igual pero trabajando con la forma cuadrática: +\end_layout + +\begin_layout Standard + +\family sans +\begin_inset Box Frameless +position "t" +hor_pos "c" +has_inner_box 1 +inner_pos "t" +use_parbox 0 +use_makebox 0 +width "100col%" +special "none" +height "1in" +height_special "totalheight" +thickness "0.4pt" +separation "3pt" +shadowsize "4pt" +framecolor "black" +backgroundcolor "none" +status open + +\begin_layout Plain Layout + +\family sans +\series bold +operación +\series default + diagonalizar(var +\begin_inset Formula $q$ +\end_inset + +: +\begin_inset Formula ${\cal Q}(\mathbb{K}^{n})$ +\end_inset + +) +\begin_inset Formula $//$ +\end_inset + + +\emph on +Trabajamos con coordenadas +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +si +\series default + +\begin_inset Formula $n>1$ +\end_inset + + +\series bold +y +\series default + +\begin_inset Formula $q\neq0$ +\end_inset + + +\series bold +entonces +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +si +\series default + el valor de +\begin_inset Formula $q$ +\end_inset + + depende de +\begin_inset Formula $x_{1}$ +\end_inset + + +\series bold +entonces +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +si +\series default + no hay ningún elemento +\begin_inset Formula $a_{ii}x_{i}^{2}$ +\end_inset + + con +\begin_inset Formula $a_{ii}\neq0$ +\end_inset + + +\series bold +entonces +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Tomar un término +\begin_inset Formula $a_{ij}x_{i}x_{j}$ +\end_inset + + con +\begin_inset Formula $a_{ij}\neq0$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Hacer el cambio +\begin_inset Formula $x_{i}=:x'_{i}+x'_{j}$ +\end_inset + +, +\begin_inset Formula $x_{j}=:x'_{i}-x'_{j}$ +\end_inset + + y +\begin_inset Formula $x_{k}=:x'_{k},k\neq i,j$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +finsi +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Tomar +\begin_inset Formula $i$ +\end_inset + + con +\begin_inset Formula $a_{ii}\neq0$ +\end_inset + +; intercambiar +\begin_inset Formula $x_{i}$ +\end_inset + + y +\begin_inset Formula $x_{1}$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Tomar +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $r$ +\end_inset + + de +\begin_inset Formula $q(x_{1},\dots,x_{n})=:a_{11}x_{1}^{2}+x_{1}p(x_{2},\dots,x_{n})+r(x_{2},\dots,x_{n})$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Reescribir +\begin_inset Formula $q$ +\end_inset + + como +\begin_inset Formula $a_{11}(x_{1}+\frac{p(x_{2},\dots,x_{n})}{2a_{11}})^{2}-\frac{p(x_{2},\dots,x_{n})}{4a_{11}}+r(x_{2},\dots,x_{n})$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +Hacer el cambio +\begin_inset Formula $x'_{1}:=x_{1}+\frac{p(x_{2},\dots,x_{n})}{2a_{11}}$ +\end_inset + + y +\begin_inset Formula $x'_{j}:=x_{j},j\neq1$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +finsi +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\begin_inset space \hspace{} +\length 5ex +\end_inset + +diagonalizar( +\begin_inset Formula $q(0,x_{2},\dots,x_{n})$ +\end_inset + +) +\end_layout + +\begin_layout Plain Layout + +\family sans +\begin_inset space \hspace{} +\length 5ex +\end_inset + + +\series bold +finsi +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, todo endomorfismo simétrico +\begin_inset Formula $f:V\rightarrow V$ +\end_inset + + diagonaliza con una base ortonormal de vectores propios. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $\alpha_{1},\dots,\alpha_{m}$ +\end_inset + + los valores propios de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $U:=V_{(\alpha_{1})}\oplus\dots\oplus V_{(\alpha_{m})}$ +\end_inset + +, siendo +\begin_inset Formula $V_{(\alpha_{i})}$ +\end_inset + + el subespacio propio correspondiente al valor propio +\begin_inset Formula $\alpha_{i}$ +\end_inset + +. + Para ver que +\begin_inset Formula $U=V$ +\end_inset + +, primero observamos que +\begin_inset Formula $f(U)\subseteq U$ +\end_inset + +, pues si +\begin_inset Formula $v_{i}\in V_{(\alpha_{i})}$ +\end_inset + + entonces +\begin_inset Formula $f(\sum\lambda_{i}v_{i})=\sum\lambda_{i}\alpha_{i}v_{i}\in U$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $u\in U$ +\end_inset + + y +\begin_inset Formula $w\in U^{\bot}$ +\end_inset + + entonces +\begin_inset Formula $f(u)\in U$ +\end_inset + + y +\begin_inset Formula $\langle f(w),u\rangle=0=\langle w,f(u)\rangle$ +\end_inset + +. + Consideremos el endomorfismo simétrico +\begin_inset Formula $f|_{U^{\bot}}$ +\end_inset + +. + Como todos los vectores propios de +\begin_inset Formula $f$ +\end_inset + + están en +\begin_inset Formula $U$ +\end_inset + +, el endomorfismo +\begin_inset Formula $f|_{U^{\bot}}$ +\end_inset + + no tiene vectores propios y por tanto +\begin_inset Formula $U^{\bot}=0$ +\end_inset + +, luego +\begin_inset Formula $U=V$ +\end_inset + +. + Si tomamos una base ortonormal de cada +\begin_inset Formula $V_{(\alpha_{i})}$ +\end_inset + +, al juntarlas obtenemos una base de +\begin_inset Formula $V$ +\end_inset + + ortonormal. +\end_layout + +\begin_layout Standard +De aquí que toda matriz simétrica real +\begin_inset Formula $A\in{\cal M}_{m\times n}(\mathbb{R})$ +\end_inset + + admite una matriz ortogonal +\begin_inset Formula $P$ +\end_inset + + tal que +\begin_inset Formula $P^{-1}AP=P^{t}AP$ +\end_inset + + es diagonal. +\end_layout + +\begin_layout Section +Rango +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + un espacio bilineal y +\begin_inset Formula $A$ +\end_inset + + la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en cierta base, llamamos +\series bold +rango +\series default + de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + a +\begin_inset Formula $\text{rg}(\langle\cdot\rangle):=\text{rg}(A)=\dim(V)-\dim Rad(\langle\cdot\rangle)$ +\end_inset + +. + Dadas las formas bilineales +\begin_inset Formula $\langle\cdot\rangle\sim\langle\cdot\rangle'$ +\end_inset + + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $\text{rg}(\langle\cdot\rangle)=\text{rg}(\langle\cdot\rangle')$ +\end_inset + + y, si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son las matrices respectivas de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + +, existe +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula $|B|=\lambda^{2}|A|$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A\sim B$ +\end_inset + +, existe +\begin_inset Formula $P$ +\end_inset + + invertible tal que +\begin_inset Formula $B=P^{t}AP$ +\end_inset + +, luego +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + tienen igual rango y +\begin_inset Formula $|B|=\lambda^{2}|A|$ +\end_inset + + con +\begin_inset Formula $\lambda:=|P|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +% +\backslash +begin{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un cuerpo es +\series bold +algebraicamente cerrado +\series default + si cualquier polinomio con coeficientes en +\begin_inset Formula $\mathbb{K}$ +\end_inset + + tiene todas sus raíces en +\begin_inset Formula $\mathbb{K}$ +\end_inset + +. + Como +\series bold +teorema +\series default +, dos formas bilineales simétricas +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + con igual rango en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + +, siendo +\begin_inset Formula $\mathbb{K}$ +\end_inset + + algebraicamente cerrado, son equivalentes. + +\series bold +Demostración: +\series default + Sabemos que en cierta base, la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es +\begin_inset Formula $D:=\text{diag}(d_{1},\dots,d_{m},0,\dots,0)$ +\end_inset + +, siendo +\begin_inset Formula $m:=\text{rg}(\langle\cdot\rangle)$ +\end_inset + +, con +\begin_inset Formula $d_{1},\dots,d_{m}\neq0$ +\end_inset + +. + Tomando la matriz in +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +ver +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +ti +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +ble +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +P:=\text{diag}(\frac{1}{\sqrt{d_{1}}},\dots,\frac{1}{\sqrt{d_{m}}},1,\dots,1) +\] + +\end_inset + + tenemos que +\begin_inset Formula +\[ +P^{t}DP=\text{diag}(\overset{m}{\overbrace{1,\dots,1}},0,\dots,0) +\] + +\end_inset + +Haciendo lo mismo con +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + obtenemos que su matriz en cierta base también es congruente con esta misma + matriz, luego ambas son congruentes. +\end_layout + +\begin_layout Standard +Por tanto, dadas dos matrices simétricas +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + sobre un cuerpo algebraicamente cerrado, +\begin_inset Formula $A\sim B\iff\text{rg}(A)=\text{rg}(B)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Cuerpos ordenados y signatura +\end_layout + +\begin_layout Standard +Un cuerpo +\begin_inset Formula $\mathbb{K}$ +\end_inset + + es +\series bold +ordenado +\series default + si existe un +\begin_inset Formula $P\subseteq\mathbb{K}$ +\end_inset + +, cuyos elementos se llaman +\series bold +positivos +\series default +, tal que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{K}=P\dot{\cup}\{0\}\dot{\cup}-P$ +\end_inset + +. + A los elementos de +\begin_inset Formula $-P:=\{-x\}_{x\in P}$ +\end_inset + + los llamamos +\series bold +negativos +\series default +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x,y\in P$ +\end_inset + +, +\begin_inset Formula $x+y,xy\in P$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Por ejemplo, +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + son ordenados, mientras que +\begin_inset Formula $\mathbb{C}$ +\end_inset + + no lo es. + Escribimos +\begin_inset Formula $x\geq0$ +\end_inset + + si +\begin_inset Formula $x$ +\end_inset + + es positivo o +\begin_inset Formula $x=0$ +\end_inset + +, y definimos la relación de orden total +\begin_inset Formula $x\leq y:\iff y-x\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una forma bilineal +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + +, siendo +\begin_inset Formula $\mathbb{K}$ +\end_inset + + ordenado, es: +\end_layout + +\begin_layout Itemize + +\series bold +Semidefinida positiva +\series default + si +\begin_inset Formula $\forall u\in V,\langle u,u\rangle\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Semidefinida negativa +\series default + si +\begin_inset Formula $\forall u\in V,\langle u,u\rangle\leq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Definida positiva +\series default + si +\begin_inset Formula $\forall u\neq0,\langle u,u\rangle>0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Definida negativa +\series default + si +\begin_inset Formula $\forall u\neq0,\langle u,u\rangle<0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Las mismas definiciones se aplican a una forma cuadrática. + Sean +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + un espacio bilineal sobre un cuerpo +\begin_inset Formula $\mathbb{\mathbb{K}}$ +\end_inset + +, +\begin_inset Formula $A:=(a_{ij})$ +\end_inset + + la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en cierta base +\begin_inset Formula ${\cal C}:=(e_{1},\dots,e_{n})$ +\end_inset + + y definimos +\begin_inset Formula +\[ +d_{1}=a_{11},d_{2}=\left|\begin{array}{cc} +a_{11} & a_{12}\\ +a_{21} & a_{22} +\end{array}\right|,\dots,d_{n}=|A| +\] + +\end_inset + + Si los +\begin_inset Formula $d_{1},\dots,d_{n}$ +\end_inset + + son todos no nulos, hay una base en que la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es +\begin_inset Formula $\text{diag}(d_{1},\frac{d_{2}}{d_{1}},\dots,\frac{d_{n}}{d_{n-1}})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $E:=<e_{1},\dots,e_{n-1}>$ +\end_inset + +, la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en +\begin_inset Formula $E$ +\end_inset + + es la matriz +\begin_inset Formula $A$ +\end_inset + + sin la última fila y columna, cuyo determinante es +\begin_inset Formula $d_{n-1}\neq0$ +\end_inset + +, luego es no degenerada y +\begin_inset Formula $V=E\oplus E^{\bot}$ +\end_inset + +. + Sea +\begin_inset Formula $v\in E^{\bot}\backslash\{0\}$ +\end_inset + +, +\begin_inset Formula $(e_{1},\dots,e_{n-1},v)$ +\end_inset + + es una base de +\begin_inset Formula $V$ +\end_inset + +, y la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en esta base es +\begin_inset Formula +\[ +B:=\left(\begin{array}{cccc} +a_{11} & \cdots & a_{1,n-1} & 0\\ +\vdots & \ddots & \vdots & \vdots\\ +a_{n-1,1} & \cdots & a_{n-1,n-1} & 0\\ +0 & \cdots & 0 & b +\end{array}\right) +\] + +\end_inset + +Tenemos +\begin_inset Formula $A\sim B$ +\end_inset + +, luego existe +\begin_inset Formula $P$ +\end_inset + + invertible con +\begin_inset Formula $A=P^{t}BP$ +\end_inset + +. + Sea +\begin_inset Formula $\lambda:=|P|$ +\end_inset + +, +\begin_inset Formula $|A|=\lambda^{2}|B|$ +\end_inset + + y +\begin_inset Formula $d_{n}=\lambda^{2}d_{n-1}b$ +\end_inset + +, y entonces la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en la base +\begin_inset Formula $(e_{1},\dots,e_{n-1},w:=\lambda v)$ +\end_inset + + es como +\begin_inset Formula $B$ +\end_inset + + pero cambiando +\begin_inset Formula $b$ +\end_inset + + por +\begin_inset Formula $\frac{d_{n}}{d_{n-1}}$ +\end_inset + +. + El resultado sigue por inducción. +\end_layout + +\begin_layout Standard +De aquí que, si además +\begin_inset Formula $\mathbb{K}$ +\end_inset + + es ordenado, la forma bilineal es definida positiva si y sólo si +\begin_inset Formula $d_{1},\dots,d_{n}>0$ +\end_inset + +, y es definida negativa si y sólo si +\begin_inset Formula $d_{1}<0$ +\end_inset + +, +\begin_inset Formula $d_{2}>0$ +\end_inset + +, +\begin_inset Formula $d_{3}<0$ +\end_inset + +, etc. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Sylvester +\series default + afirma que si +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + es un espacio bilineal sobre un cuerpo +\begin_inset Formula $\mathbb{K}$ +\end_inset + + ordenado, +\begin_inset Formula $V$ +\end_inset + + se descompone en suma directa ortogonal como +\begin_inset Formula $V=V_{+}\oplus V_{-}\oplus V_{0}$ +\end_inset + +, donde +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + restringida a +\begin_inset Formula $V_{+}$ +\end_inset + +, a +\begin_inset Formula $V_{-}$ +\end_inset + + y a +\begin_inset Formula $V_{0}$ +\end_inset + + es definida positiva, definida negativa y nula, respectivamente. + Además, +\begin_inset Formula $p:=\dim(V_{+})$ +\end_inset + + y +\begin_inset Formula $m:=\dim(V_{-})$ +\end_inset + + son únicos, y al par +\begin_inset Formula $(p,m)$ +\end_inset + + lo llamamos la +\series bold +signatura +\series default + de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula ${\cal C}:=(e_{1},\dots,e_{n})$ +\end_inset + + una base de +\begin_inset Formula $V$ +\end_inset + + donde la matriz de la forma bilineal es +\begin_inset Formula +\[ +\text{diag}(d_{1},\dots,d_{p},d_{p+1},\dots,d_{p+m},0,\dots,0) +\] + +\end_inset + +con +\begin_inset Formula $d_{i}>0$ +\end_inset + + para +\begin_inset Formula $i\in\{1,\dots,p\}$ +\end_inset + + y +\begin_inset Formula $d_{i}<0$ +\end_inset + + para +\begin_inset Formula $i\in\{p+1,\dots,p+m\}$ +\end_inset + +. + Es claro que la descomposición dada por +\begin_inset Formula +\begin{eqnarray*} +V_{+}:=<e_{1},\dots,e_{p}>, & V_{-}:=<e_{p+1},\dots,e_{p+m}>, & V_{0}:=<e_{p+m+1},\dots,e_{n}> +\end{eqnarray*} + +\end_inset + + cumple las condiciones. + Para la unicidad, supongamos +\begin_inset Formula $V=V_{+}\oplus V_{-}\oplus V_{0}=W_{+}\oplus W_{-}\oplus W_{0}$ +\end_inset + +. + Sea +\begin_inset Formula $\pi_{+}:V\rightarrow V_{+}$ +\end_inset + + la proyección canónica de +\begin_inset Formula $V$ +\end_inset + + sobre +\begin_inset Formula $V_{+}$ +\end_inset + +, +\begin_inset Formula $\ker(\pi|_{W_{+}})=\ker(\pi)\cap W_{+}=(V_{-}\oplus V_{0})\cap W_{+}$ +\end_inset + +. + Sea +\begin_inset Formula $u\in(V_{-}\oplus V_{0})\cap W_{+}$ +\end_inset + +, tenemos que +\begin_inset Formula $u=u_{-}+u_{0}$ +\end_inset + + con +\begin_inset Formula $u_{-}\in V_{-}$ +\end_inset + + y +\begin_inset Formula $u_{0}\in V_{0}$ +\end_inset + + y como +\begin_inset Formula $u\in W_{+}$ +\end_inset + +, +\begin_inset Formula $\langle u,u\rangle\geq0$ +\end_inset + +, pero +\begin_inset Formula +\[ +0\leq\langle u,u\rangle=\langle u_{-},u_{-}\rangle+2\langle u_{-},u_{0}\rangle+\langle u_{0},u_{0}\rangle=\langle u_{-},u_{-}\rangle\leq0 +\] + +\end_inset + +de donde +\begin_inset Formula $\langle u,u\rangle=0$ +\end_inset + + y, por ser +\begin_inset Formula $u\in W_{+}$ +\end_inset + +, +\begin_inset Formula $u=0$ +\end_inset + +. + Por tanto +\begin_inset Formula $\pi|_{W_{+}}$ +\end_inset + + es inyectiva y +\begin_inset Formula $\dim W_{+}\leq\dim V_{+}$ +\end_inset + +. + De forma parecida podemos probar que +\begin_inset Formula $\dim W_{-}\leq\dim V_{-}$ +\end_inset + + y +\begin_inset Formula $\dim W_{0}\leq\dim W_{0}$ +\end_inset + +, probando el teorema. +\end_layout + +\begin_layout Standard +De aquí que, si +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + y +\begin_inset Formula $(V,\langle\cdot\rangle')$ +\end_inset + + son espacios bilineales isométricos sobre un cuerpo +\begin_inset Formula $\mathbb{K}$ +\end_inset + + ordenado, entonces +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + tienen la misma signatura. + La +\series bold +ley de inercia de Sylvester +\series default + afirma que, si +\begin_inset Formula $\mathbb{K}=\mathbb{R}$ +\end_inset + +, el recíproco de esto también se cumple. + En efecto, si +\begin_inset Formula $(p,m)$ +\end_inset + + es la signatura de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + +, existe una base de +\begin_inset Formula $V$ +\end_inset + + en que la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es +\begin_inset Formula $\text{diag}(d_{1},\dots,d_{p},d_{p+1},\dots,d_{p+m},0,\dots,0)$ +\end_inset + +, siendo +\begin_inset Formula $d_{1},\dots,d_{p}>0$ +\end_inset + + y +\begin_inset Formula $d_{p+1},\dots,d_{p+m}<0$ +\end_inset + +, pero los positivos difieren de 1 en un cuadrado y los negativos de +\begin_inset Formula $-1$ +\end_inset + + en un cuadrado, por lo que hay una base en que la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es +\begin_inset Formula +\[ +D:=\text{diag}(\overset{p}{\overbrace{1,\dots,1}},\overset{m}{\overbrace{-1,\dots,-1}},0,\dots,0) +\] + +\end_inset + +y, análogamente, hay una base en que la matriz de +\begin_inset Formula $\langle\cdot\rangle'$ +\end_inset + + es +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Section +Descomposición de Witt +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + un espacio bilineal, llamamos +\series bold +simetría respecto al vector +\series default + +\begin_inset Formula $v\in V$ +\end_inset + + no isótropo a la isometría +\begin_inset Formula $s_{v}:V\rightarrow V$ +\end_inset + + dada por +\begin_inset Formula +\[ +s_{v}(u)=-u+2\frac{\langle u,v\rangle}{\langle v,v\rangle} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $u,v\in V$ +\end_inset + + no isótropos con +\begin_inset Formula $\langle u,u\rangle=\langle v,v\rangle$ +\end_inset + +, existe una isometría +\begin_inset Formula $f:V\rightarrow V$ +\end_inset + + con +\begin_inset Formula $f(u)=v$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $u+v$ +\end_inset + + es no isótropo, +\begin_inset Formula +\[ +s_{u+v}(u)=-u+\frac{2\langle u,u\rangle+2\langle u,v\rangle}{\langle u,u\rangle+\langle v,v\rangle+2\langle u,v\rangle}(u+v)=-u+\frac{2\langle u,u\rangle+2\langle u,v\rangle}{2\langle u,u\rangle+2\langle u,v\rangle}(u+v)=v +\] + +\end_inset + +Si +\begin_inset Formula $u+v$ +\end_inset + + es isótropo, +\begin_inset Formula $u-v$ +\end_inset + + no lo es, pues +\begin_inset Formula $\langle u+v,u+v\rangle+\langle u-v,u-v\rangle=4\langle u,u\rangle\neq0$ +\end_inset + +, y entonces definimos +\begin_inset Formula $t(w):=-w$ +\end_inset + + y vemos que +\begin_inset Formula $(t\circ s_{u-v})(u)=v$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $D_{1}:=\text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ +\end_inset + + y +\begin_inset Formula $D_{2}:=\text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ +\end_inset + + son matrices con +\begin_inset Formula $a_{1},\dots,a_{r}\neq0$ +\end_inset + +, si +\begin_inset Formula $D_{1}$ +\end_inset + + es congruente con +\begin_inset Formula $D_{2}$ +\end_inset + + entonces +\begin_inset Formula $\text{diag}(b_{r+1},\dots,b_{n})$ +\end_inset + + lo es con +\begin_inset Formula $\text{diag}(c_{r+1},\dots,c_{n})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Basta ver que esto se cumple con +\begin_inset Formula $r=1$ +\end_inset + +. + Sean +\begin_inset Formula $D_{1}=\text{diag}(a,b_{2},\dots,b_{n})$ +\end_inset + + y +\begin_inset Formula $D_{2}=\text{diag}(a,c_{2},\dots,c_{n})$ +\end_inset + + matrices de una forma bilineal +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en las bases +\begin_inset Formula $(u_{1},\dots,u_{n})$ +\end_inset + + y +\begin_inset Formula $(v_{1},\dots,v_{n})$ +\end_inset + +, respectivamente. + Entonces +\begin_inset Formula $\langle u_{1},u_{1}\rangle=a=\langle v_{1},v_{1}\rangle\neq0$ +\end_inset + + y existe una isometría +\begin_inset Formula $s$ +\end_inset + + con +\begin_inset Formula $s(u_{1})=v_{1}$ +\end_inset + +, por lo que +\begin_inset Formula $\{s(u_{1}),\dots,s(u_{n})\}$ +\end_inset + + es base ortogonal de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $E:=<s(u_{2}),\dots,s(u_{n})>=<s(u_{1})>^{\bot}=<v_{1}>^{\bot}=<v_{2},\dots,v_{n}>$ +\end_inset + +. + La matriz de +\begin_inset Formula $\langle\cdot\rangle|_{E}$ +\end_inset + + es +\begin_inset Formula $\text{diag}(b_{2},\dots,b_{n})$ +\end_inset + + en +\begin_inset Formula $(s(u_{2}),\dots,s(u_{n}))$ +\end_inset + + y es +\begin_inset Formula $\text{diag}(c_{2},\dots,c_{n})$ +\end_inset + + en +\begin_inset Formula $(v_{2},\dots,v_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +corolario de cancelación de Witt +\series default + afirma que si +\begin_inset Formula $U_{1},U_{2}\leq V$ +\end_inset + + son tales que +\begin_inset Formula $\langle\cdot\rangle|_{U_{1}}$ +\end_inset + + y +\begin_inset Formula $\langle\cdot\rangle|_{U_{2}}$ +\end_inset + + son no degeneradas y +\begin_inset Formula $U_{1}$ +\end_inset + + es isométrico a +\begin_inset Formula $U_{2}$ +\end_inset + +, entonces +\begin_inset Formula $U_{1}^{\bot}$ +\end_inset + + es isométrico a +\begin_inset Formula $U_{2}^{\bot}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Tenemos +\begin_inset Formula $V=U_{1}\oplus U_{1}^{\bot}=U_{2}\oplus U_{2}^{\bot}$ +\end_inset + +, existen bases respectivas +\begin_inset Formula $(u_{1},\dots,u_{r})$ +\end_inset + + y +\begin_inset Formula $(v_{1},\dots,v_{r})$ +\end_inset + + de +\begin_inset Formula $U_{1}$ +\end_inset + + y +\begin_inset Formula $U_{2}$ +\end_inset + + respecto de las cuales la matriz de +\begin_inset Formula $\langle\cdot\rangle|_{U_{1}}$ +\end_inset + + y de +\begin_inset Formula $\langle\cdot\rangle|_{U_{2}}$ +\end_inset + + es +\begin_inset Formula $\text{diag}(a_{1},\dots,a_{r})$ +\end_inset + + con +\begin_inset Formula $a_{1},\dots,a_{r}\neq0$ +\end_inset + +. + Sean +\begin_inset Formula $(u_{r+1},\dots,u_{n})$ +\end_inset + + y +\begin_inset Formula $(v_{r+1},\dots,v_{n})$ +\end_inset + + bases respectivas de +\begin_inset Formula $U_{1}^{\bot}$ +\end_inset + + y +\begin_inset Formula $U_{2}^{\bot}$ +\end_inset + +, si +\begin_inset Formula $D_{1}:=\text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ +\end_inset + + y +\begin_inset Formula $D_{2}:=\text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ +\end_inset + + son las matrices de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + res +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +pec +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +to de +\begin_inset Formula $(u_{1},\dots,u_{n})$ +\end_inset + + y +\begin_inset Formula $(v_{1},\dots,v_{n})$ +\end_inset + +, respectivamente, entonces +\begin_inset Formula $D_{1}\sim D_{2}$ +\end_inset + + y +\begin_inset Formula $\text{diag}(b_{r+1},\dots,b_{n})\sim\text{diag}(c_{r+1},\dots,c_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +plano hiperbólico +\series default + es un espacio bilineal +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + de dimensión 2 donde +\begin_inset Formula $V$ +\end_inset + + contiene vectores isótropos no nulos y +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es no degenerada. + Un espacio bilineal +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + de dimensión 2 es un plano hiperbólico si y sólo si existe una base de + +\begin_inset Formula $V$ +\end_inset + + respecto la cual la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es +\begin_inset Formula $\text{diag}(1,-1)$ +\end_inset + +. + Por tanto todos los planos hiperbólicos sobre un mismo cuerpo son isométricos. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $u\neq0$ +\end_inset + + isótropo, +\begin_inset Formula $v\in V$ +\end_inset + + tal que +\begin_inset Formula $(u,v)$ +\end_inset + + es una base y +\begin_inset Formula $v':=\frac{v}{\langle u,v\rangle}$ +\end_inset + +, la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en +\begin_inset Formula $(u,v')$ +\end_inset + + es +\begin_inset Formula +\[ +A:=\left(\begin{array}{cc} +0 & 1\\ +1 & a +\end{array}\right) +\] + +\end_inset + +con +\begin_inset Formula $a:=\langle v',v'\rangle$ +\end_inset + +. + Sea ahora +\begin_inset Formula $w:=xu+v'$ +\end_inset + + tal que +\begin_inset Formula $\langle w,w\rangle=1$ +\end_inset + +, entonces +\begin_inset Formula $1=\langle xu+v',xu+v'\rangle=x^{2}\langle u,u\rangle+\langle v',v'\rangle+2x\langle u,v'\rangle=a+2x$ +\end_inset + + y por tanto +\begin_inset Formula $w=\frac{1-a}{2}u+v'$ +\end_inset + +. + Sea +\begin_inset Formula $w'\in<w>^{\bot}$ +\end_inset + +, la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en la base +\begin_inset Formula $(w,w')$ +\end_inset + + es +\begin_inset Formula +\[ +B:=\left(\begin{array}{cc} +1 & 0\\ +0 & b +\end{array}\right) +\] + +\end_inset + +con +\begin_inset Formula $b:=\langle w',w'\rangle$ +\end_inset + +. + Las matrices +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son congruentes, luego sus determinantes difieren en un cuadrado y +\begin_inset Formula $b=-\lambda^{2}$ +\end_inset + + para cierto +\begin_inset Formula $\lambda$ +\end_inset + +. + Sea +\begin_inset Formula $w''=\frac{w'}{\lambda}$ +\end_inset + +, +\begin_inset Formula $\langle w'',w''\rangle=-1$ +\end_inset + + y la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + en +\begin_inset Formula $(w,w'')$ +\end_inset + + es +\begin_inset Formula +\[ +\left(\begin{array}{cc} +1 & 0\\ +0 & -1 +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si identificamos los vectores con sus coordenadas respecto a la base en + la que la matriz de +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es +\begin_inset Formula $\text{diag}(1,-1)$ +\end_inset + +, entonces +\begin_inset Formula $(1,-1)$ +\end_inset + + es isótropo no nulo y, si hubiera un +\begin_inset Formula $v:=(v_{1},v_{2})$ +\end_inset + + con +\begin_inset Formula $\langle u,v\rangle=0\forall u$ +\end_inset + +, en particular +\begin_inset Formula $\langle(1,0),v\rangle=v_{1}=0$ +\end_inset + + y +\begin_inset Formula $\langle(0,1),v\rangle=-v_{2}=0$ +\end_inset + + y sería +\begin_inset Formula $v=0$ +\end_inset + +, luego +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es no degenerada. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\dim(V)\geq2$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + contiene vectores isótropos no nulos y +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + es no degenerada, entonces +\begin_inset Formula $V$ +\end_inset + + contiene un plano hiperbólico. + En efecto, sea +\begin_inset Formula $u\neq0$ +\end_inset + + isótropo, existe +\begin_inset Formula $v\in V$ +\end_inset + + con +\begin_inset Formula $\langle u,v\rangle=0$ +\end_inset + +, pues de lo contrario +\begin_inset Formula $u\in\text{Rad}(V)=0$ +\end_inset + +, y podemos ver que +\begin_inset Formula $<u,v>$ +\end_inset + + es un plano hiperbólico. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de descomposición de Witt +\series default + afirma que, sea +\begin_inset Formula $(V,\langle\cdot\rangle)$ +\end_inset + + un espacio bilineal con +\begin_inset Formula $\langle\cdot\rangle$ +\end_inset + + no degenerada, entonces +\begin_inset Formula +\[ +V=:P_{1}\oplus\dots\oplus P_{s}\oplus W +\] + +\end_inset + +siendo +\begin_inset Formula $P_{1},\dots,P_{k}$ +\end_inset + + planos hiperbólicos y +\begin_inset Formula $W$ +\end_inset + + anisótropo, y si +\begin_inset Formula $V=Q_{1}\oplus\dots\oplus Q_{t}\oplus W'$ +\end_inset + + es otra descomposición ortogonal de +\begin_inset Formula $V$ +\end_inset + + con +\begin_inset Formula $Q_{1},\dots,Q_{t}$ +\end_inset + + planos hiperbólicos y +\begin_inset Formula $W'$ +\end_inset + + anisótropo, entonces +\begin_inset Formula $s=t$ +\end_inset + + y +\begin_inset Formula $W$ +\end_inset + + es isométrico a +\begin_inset Formula $W'$ +\end_inset + +. + Llamamos +\series bold +descomposición de Witt +\series default + a cualquiera de este tipo, y llamamos a +\begin_inset Formula $s$ +\end_inset + + el +\series bold +índice de Witt +\series default +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $\dim(V)=1$ +\end_inset + +, si hubiera un vector +\begin_inset Formula $u\neq0$ +\end_inset + + isótropo, sería +\begin_inset Formula $\langle\lambda u,u\rangle=0$ +\end_inset + + para todo +\begin_inset Formula $\lambda$ +\end_inset + + y por tanto +\begin_inset Formula $\text{Rad}(V)\neq0\#$ +\end_inset + +, luego +\begin_inset Formula $V$ +\end_inset + + es anisótropo. + Si +\begin_inset Formula $n:=\dim(V)\geq2$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + no es anisótropo, debe contener un plano hiperbólico +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $V=P\oplus P^{\bot}$ +\end_inset + +. + +\begin_inset Formula $\langle\cdot\rangle|_{P^{\bot}}$ +\end_inset + + es no degenerada y por tanto el resultado sigue por inducción. + Para la unicidad, sea +\begin_inset Formula $V=P_{1}\oplus\dots\oplus P_{s}\oplus W=Q_{1}\oplus\dots\oplus Q_{t}\oplus W'$ +\end_inset + + y supongamos +\begin_inset Formula $t\geq s$ +\end_inset + +. + Como todos los planos hiperbólicos sobre un mismo cuerpo son isométricos, + +\begin_inset Formula $P_{1}\oplus\dots\oplus P_{s}$ +\end_inset + + es isométrico a +\begin_inset Formula $Q_{1}\oplus\dots\oplus Q_{s}$ +\end_inset + + y, por el teorema de cancelación de Witt, +\begin_inset Formula $W$ +\end_inset + + es isométrico a +\begin_inset Formula $Q_{s+1}\oplus\dots\oplus Q_{t}\oplus W'$ +\end_inset + +. + Entonces debe ser +\begin_inset Formula $t=s$ +\end_inset + + porque de lo contrario tendríamos un subespacio anisótropo isométrico a + uno que no lo es, y por tanto +\begin_inset Formula $W$ +\end_inset + + debe ser isométrico a +\begin_inset Formula $W'$ +\end_inset + +. +\end_layout + +\begin_layout Section +Cónicas proyectivas y formas cuadráticas +\end_layout + +\begin_layout Standard +Una +\series bold +cónica proyectiva +\series default + en +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + es una clase de equivalencia en el conjunto de polinomios homogéneos de + grado 2 en +\begin_inset Formula $\mathbb{K}[x,y,z]$ +\end_inset + +, o de formas cuadráticas no nulas de dimensión 3, bajo la relación +\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$ +\end_inset + +. + Escribimos +\begin_inset Formula ${\cal C}_{q}:=[q]$ +\end_inset + +, y la identificamos con el conjunto de puntos +\begin_inset Formula $[a,b,c]$ +\end_inset + + en los que +\begin_inset Formula $q(a,b,c)=0$ +\end_inset + +. + En +\begin_inset Formula $\mathbb{P}^{2}(\mathbb{R})$ +\end_inset + +, una cónica proyectiva es la ampliación proyectiva de una cónica afín de + matriz proyectiva igual a la matriz de la forma cuadrática: +\end_layout + +\begin_layout Itemize +Dada una elipse de ecuación +\begin_inset Formula $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ +\end_inset + +, su homogeneización es +\begin_inset Formula $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z^{2}$ +\end_inset + +. + Los puntos del infinito son aquellos en que +\begin_inset Formula $z=0$ +\end_inset + +, siendo la única solución cuando +\begin_inset Formula $x=y=0$ +\end_inset + +. + Como +\begin_inset Formula $[0,0,0]$ +\end_inset + + no existe, la elipse no tiene puntos en el infinito. +\end_layout + +\begin_layout Itemize +Dada una hipérbola de ecuación +\begin_inset Formula $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ +\end_inset + +, su homogeneización es +\begin_inset Formula $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=z^{2}$ +\end_inset + + y vemos que sus puntos del infinito son aquellos en que +\begin_inset Formula $z=0$ +\end_inset + + y por tanto +\begin_inset Formula $x=\pm\frac{a}{b}y$ +\end_inset + +, con lo que la hipérbola tiene dos puntos del infinito correspondientes + a sus asíntotas. +\end_layout + +\begin_layout Itemize +Dada una parábola de ecuación +\begin_inset Formula $y^{2}=2px$ +\end_inset + +, su homogeneización es +\begin_inset Formula $y^{2}=2pxz$ +\end_inset + +, siendo los puntos en el infinito aquellos en que +\begin_inset Formula $y=z=0$ +\end_inset + +, con lo que la parábola tiene un punto en el infinito correspondiente a + su eje. +\end_layout + +\begin_layout Standard +Dos puntos +\begin_inset Formula $P,Q\in\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + son +\series bold +conjugados +\series default + respecto de una cónica proyectiva de matriz proyectiva +\begin_inset Formula $\overline{A}$ +\end_inset + + si +\begin_inset Formula $[P]^{t}\overline{A}[Q]=0$ +\end_inset + +. + +\begin_inset Formula $P\in\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + es un punto +\series bold +singular +\series default + respecto de una cónica proyectiva si es conjugado de cualquier +\begin_inset Formula $Q\in\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + +, y es +\series bold +regular +\series default + en caso contrario. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula ${\cal Q}$ +\end_inset + + una cónica no degenerada de matriz +\begin_inset Formula $\overline{A}$ +\end_inset + +, llamamos +\series bold +recta polar +\series default + de +\begin_inset Formula $P\in\mathbb{P}^{2}(\mathbb{K})$ +\end_inset + + respecto de +\begin_inset Formula ${\cal Q}$ +\end_inset + + a +\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K}):[P]^{t}\overline{A}[X]=0\}$ +\end_inset + +, y decimos que +\begin_inset Formula $P$ +\end_inset + + es el +\series bold +polo +\series default + de la recta +\begin_inset Formula $r_{P}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una recta es +\series bold +tangente +\series default + a una cónica si la corta en un único punto. + Por el principio de dua +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +li +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +dad del plano proyectivo, podemos describir una cónica mediante los puntos + que le pertenecen o como el conjunto de todas sus tangentes. +\end_layout + +\begin_layout Standard +Una cónica es +\series bold +no degenerada +\series default + si +\begin_inset Formula $\Delta:=|\overline{A}|\neq0$ +\end_inset + +. + Dos cónicas +\begin_inset Formula ${\cal C}_{q}$ +\end_inset + + y +\begin_inset Formula ${\cal C}_{q'}$ +\end_inset + + son +\series bold +proyectivamente equivalentes +\series default + si podemos transformar una en la otra mediante un cambio de coordenadas + proyectivas, si y sólo si la signatura de la forma bilineal asociada a + una es igual u opuesta a la de la otra. + Esto resulta en los siguientes tipos de cónicas: +\end_layout + +\begin_layout Standard +\align center +\begin_inset Tabular +<lyxtabular version="3" rows="6" columns="4"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Rango +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Signatura +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Ecuación reducida +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Tipo de cónica +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell multirow="3" alignment="center" valignment="middle" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +3 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $(3,0)/(0,3)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{2}+y^{2}+z^{2}=0$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +No degenerada imaginaria +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $(2,1)/(1,2)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{2}+y^{2}-z^{2}=0$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +No degenerada real +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell multirow="3" alignment="center" valignment="middle" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +2 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $(2,0)/(0,2)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{2}+y^{2}=0$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Punto +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell multirow="4" alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $(1,1)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{2}-y^{2}=0$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Par de rectas distintas +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $(1,0)/(0,1)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{2}=0$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Recta doble +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + +\end_body +\end_document |
