diff options
Diffstat (limited to 'aalg')
| -rw-r--r-- | aalg/n1.lyx | 4 | ||||
| -rw-r--r-- | aalg/n2.lyx | 2 | ||||
| -rw-r--r-- | aalg/n3.lyx | 10 | ||||
| -rw-r--r-- | aalg/n4.lyx | 6 |
4 files changed, 11 insertions, 11 deletions
diff --git a/aalg/n1.lyx b/aalg/n1.lyx index 520ce4b..a783d88 100644 --- a/aalg/n1.lyx +++ b/aalg/n1.lyx @@ -1235,7 +1235,7 @@ Demostración: en común, los tres puntos estarían alineados. Así, podemos tomar -\begin_inset Formula $\{O\}:=m\cap m'$ +\begin_inset Formula $\{O\}\mid =m\cap m'$ \end_inset y entonces @@ -2296,7 +2296,7 @@ hemisferio norte \end_inset de la hipérbola ( -\begin_inset Formula $\{(x,y)\in{\cal H}:y\geq0\}$ +\begin_inset Formula $\{(x,y)\in{\cal H}\mid y\geq0\}$ \end_inset ), dado por diff --git a/aalg/n2.lyx b/aalg/n2.lyx index 94fb772..d6c0241 100644 --- a/aalg/n2.lyx +++ b/aalg/n2.lyx @@ -338,7 +338,7 @@ Los vectores propios de . Así, -\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$ +\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$ \end_inset es el diff --git a/aalg/n3.lyx b/aalg/n3.lyx index d0e0932..a6df369 100644 --- a/aalg/n3.lyx +++ b/aalg/n3.lyx @@ -1883,7 +1883,7 @@ Sean \end_inset y -\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):f(x,y)=0\}$ +\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid f(x,y)=0\}$ \end_inset , llamamos @@ -1899,7 +1899,7 @@ completación proyectiva \end_inset a -\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K}):f^{*}(x,y,z)=0\}$ +\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K})\mid f^{*}(x,y,z)=0\}$ \end_inset , y para @@ -1915,7 +1915,7 @@ parte afín \end_inset es -\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):<(x,y,1)>\in\hat{{\cal L}}\}$ +\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid <(x,y,1)>\in\hat{{\cal L}}\}$ \end_inset . @@ -1928,12 +1928,12 @@ parte afín \end_inset , -\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y):F(x,y,1)=0\}=\{(x,y):F_{*}(x,y)=0\}$ +\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y)\mid F(x,y,1)=0\}=\{(x,y)\mid F_{*}(x,y)=0\}$ \end_inset . Entonces -\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>:(F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>:F(x,y,0)=0\}$ +\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>\mid (F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>\mid F(x,y,0)=0\}$ \end_inset , y si diff --git a/aalg/n4.lyx b/aalg/n4.lyx index 11a1a77..96b456a 100644 --- a/aalg/n4.lyx +++ b/aalg/n4.lyx @@ -827,7 +827,7 @@ subespacio ortogonal \end_inset al subespacio -\begin_inset Formula $E^{\bot}:=\{v\in V:\forall e\in E,\langle v,e\rangle=0\}$ +\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$ \end_inset . @@ -3827,7 +3827,7 @@ cónica proyectiva \end_inset , o de formas cuadráticas no nulas de dimensión 3, bajo la relación -\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$ +\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$ \end_inset . @@ -3975,7 +3975,7 @@ recta polar \end_inset a -\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K}):[P]^{t}\overline{A}[X]=0\}$ +\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$ \end_inset , y decimos que |
