aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--aalg/n1.lyx4
-rw-r--r--aalg/n2.lyx2
-rw-r--r--aalg/n3.lyx10
-rw-r--r--aalg/n4.lyx6
-rw-r--r--ac/n1.lyx48
-rw-r--r--ac/n2.lyx14
-rw-r--r--ac/n3.lyx8
-rwxr-xr-xaec/n.pdfbin455610 -> 0 bytes
-rw-r--r--aed1/graph.epsbin0 -> 10750 bytes
-rw-r--r--aed1/n2.lyx4
-rw-r--r--aed1/n4.lyx29
-rw-r--r--aed2/n.pdfbin588738 -> 0 bytes
-rw-r--r--af/n1.lyx8
-rw-r--r--algl/n1.lyx10
-rw-r--r--algl/n4.lyx2
-rw-r--r--algl/n5.lyx2
-rw-r--r--anm/n1.lyx26
-rw-r--r--anm/n2.lyx2
-rw-r--r--anm/n3.lyx2
-rw-r--r--anm/na.lyx2
-rw-r--r--aoc/n3.lyx2
-rwxr-xr-xar/n.pdfbin265682 -> 0 bytes
-rw-r--r--bd/n5.lyx21
-rw-r--r--bd/n6.lyx14
-rw-r--r--bd/n7.lyx4
-rw-r--r--cc/n1.lyx2
-rw-r--r--cc/n3.lyx10
-rwxr-xr-xcn/n.pdfbin326312 -> 0 bytes
-rw-r--r--cyn/n1.lyx12
-rw-r--r--cyn/n2.lyx10
-rw-r--r--cyn/n4.lyx2
-rw-r--r--cyn/n5.lyx2
-rw-r--r--cyn/n7.lyx10
-rw-r--r--cyn/n8.lyx2
-rw-r--r--ealg/n1.lyx12
-rw-r--r--ealg/n2.lyx2
-rw-r--r--ealg/n4.lyx8
-rw-r--r--ealg/n5.lyx2
-rw-r--r--ealg/n6.lyx6
-rw-r--r--ealg/n7.lyx8
-rw-r--r--edo/n.pdfbin531210 -> 0 bytes
-rw-r--r--epe/n.pdfbin509398 -> 0 bytes
-rw-r--r--fc/AND_ANSI_Labelled.svgbin6374 -> 4971 bytes
-rw-r--r--fc/NAND_ANSI_Labelled.svgbin6769 -> 5038 bytes
-rw-r--r--fc/NOR_ANSI_Labelled.svgbin6895 -> 5125 bytes
-rw-r--r--fc/Not-gate-en.svgbin3508 -> 8263 bytes
-rw-r--r--fc/OR_ANSI_Labelled.svgbin6461 -> 5064 bytes
-rw-r--r--fc/XOR_ANSI.svgbin5376 -> 4961 bytes
-rw-r--r--fc/Xnor-gate-en.svgbin4676 -> 9716 bytes
-rw-r--r--fc/n1.lyx51
-rw-r--r--fc/n3.lyx133
-rw-r--r--fli/n6.lyx8
-rw-r--r--fuvr1/n1.lyx30
-rw-r--r--fuvr1/n2.lyx20
-rw-r--r--fuvr1/n3.lyx2
-rw-r--r--fuvr2/n1.lyx2
-rw-r--r--fuvr2/n2.lyx2
-rw-r--r--fuvr2/n3.lyx2
-rw-r--r--fvc/n2.lyx4
-rw-r--r--fvc/n3.lyx10
-rw-r--r--fvc/n4.lyx12
-rw-r--r--fvv1/n1.lyx4
-rw-r--r--fvv1/n2.lyx2
-rw-r--r--fvv1/n3.lyx2
-rw-r--r--fvv1/n4.lyx4
-rw-r--r--fvv2/n1.lyx10
-rw-r--r--fvv2/n2.lyx6
-rw-r--r--fvv2/n3.lyx16
-rw-r--r--fvv2/n4.lyx2
-rw-r--r--fvv3/n.pdfbin426980 -> 0 bytes
-rw-r--r--ga/n1.lyx18
-rw-r--r--ga/n2.lyx4
-rw-r--r--ga/n3.lyx12
-rw-r--r--ga/n4.lyx20
-rw-r--r--ga/n5.lyx6
-rw-r--r--ga/n6.lyx2
-rw-r--r--gae/n2.lyx6
-rw-r--r--gcs/n1.lyx4
-rw-r--r--gcs/n2.lyx6
-rw-r--r--gcs/n3.lyx8
-rw-r--r--ggs/n2.lyx8
-rw-r--r--ggs/n3.lyx10
-rw-r--r--ggs/n4.lyx4
-rw-r--r--ggs/n5.lyx2
-rw-r--r--ggs/n7.lyx2
-rw-r--r--graf/n1.lyx10
-rw-r--r--graf/n2.lyx2
-rw-r--r--graf/n4.lyx4
-rw-r--r--graf/n6.lyx28
-rw-r--r--graf/n7.lyx6
-rw-r--r--iso/n2.lyx94
-rw-r--r--mc/n1.lyx4
-rw-r--r--mc/n2.lyx4
-rw-r--r--mc/n4.lyx20
-rw-r--r--mc/n5.lyx8
-rw-r--r--mc/n7.lyx12
-rw-r--r--mc/n8.lyx16
-rw-r--r--mne/n2.lyx2
-rw-r--r--mne/n5.lyx6
-rw-r--r--pcd/n.pdfbin406994 -> 0 bytes
-rw-r--r--pds/n3.lyx2
-rw-r--r--rc/n.pdfbin489661 -> 0 bytes
-rw-r--r--si/n2.lyx4
-rw-r--r--si/n3.lyx4
-rw-r--r--si/n5.lyx2
-rw-r--r--si/n7.lyx4
-rw-r--r--tem/n1.lyx8
-rw-r--r--tem/n2.lyx10
-rw-r--r--tem/n3.lyx2
-rw-r--r--tem/n4.lyx2
-rw-r--r--ts/n1.lyx26
-rw-r--r--ts/n2.lyx16
-rw-r--r--ts/n3.lyx22
-rw-r--r--ts/n4.lyx2
-rw-r--r--ts/n6.lyx34
115 files changed, 694 insertions, 402 deletions
diff --git a/aalg/n1.lyx b/aalg/n1.lyx
index 520ce4b..a783d88 100644
--- a/aalg/n1.lyx
+++ b/aalg/n1.lyx
@@ -1235,7 +1235,7 @@ Demostración:
en común, los tres puntos estarían alineados.
Así, podemos tomar
-\begin_inset Formula $\{O\}:=m\cap m'$
+\begin_inset Formula $\{O\}\mid =m\cap m'$
\end_inset
y entonces
@@ -2296,7 +2296,7 @@ hemisferio norte
\end_inset
de la hipérbola (
-\begin_inset Formula $\{(x,y)\in{\cal H}:y\geq0\}$
+\begin_inset Formula $\{(x,y)\in{\cal H}\mid y\geq0\}$
\end_inset
), dado por
diff --git a/aalg/n2.lyx b/aalg/n2.lyx
index 94fb772..d6c0241 100644
--- a/aalg/n2.lyx
+++ b/aalg/n2.lyx
@@ -338,7 +338,7 @@ Los vectores propios de
.
Así,
-\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$
+\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$
\end_inset
es el
diff --git a/aalg/n3.lyx b/aalg/n3.lyx
index d0e0932..a6df369 100644
--- a/aalg/n3.lyx
+++ b/aalg/n3.lyx
@@ -1883,7 +1883,7 @@ Sean
\end_inset
y
-\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):f(x,y)=0\}$
+\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid f(x,y)=0\}$
\end_inset
, llamamos
@@ -1899,7 +1899,7 @@ completación proyectiva
\end_inset
a
-\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K}):f^{*}(x,y,z)=0\}$
+\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K})\mid f^{*}(x,y,z)=0\}$
\end_inset
, y para
@@ -1915,7 +1915,7 @@ parte afín
\end_inset
es
-\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):<(x,y,1)>\in\hat{{\cal L}}\}$
+\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid <(x,y,1)>\in\hat{{\cal L}}\}$
\end_inset
.
@@ -1928,12 +1928,12 @@ parte afín
\end_inset
,
-\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y):F(x,y,1)=0\}=\{(x,y):F_{*}(x,y)=0\}$
+\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y)\mid F(x,y,1)=0\}=\{(x,y)\mid F_{*}(x,y)=0\}$
\end_inset
.
Entonces
-\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>:(F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>:F(x,y,0)=0\}$
+\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>\mid (F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>\mid F(x,y,0)=0\}$
\end_inset
, y si
diff --git a/aalg/n4.lyx b/aalg/n4.lyx
index 11a1a77..96b456a 100644
--- a/aalg/n4.lyx
+++ b/aalg/n4.lyx
@@ -827,7 +827,7 @@ subespacio ortogonal
\end_inset
al subespacio
-\begin_inset Formula $E^{\bot}:=\{v\in V:\forall e\in E,\langle v,e\rangle=0\}$
+\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$
\end_inset
.
@@ -3827,7 +3827,7 @@ cónica proyectiva
\end_inset
, o de formas cuadráticas no nulas de dimensión 3, bajo la relación
-\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$
+\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$
\end_inset
.
@@ -3975,7 +3975,7 @@ recta polar
\end_inset
a
-\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K}):[P]^{t}\overline{A}[X]=0\}$
+\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$
\end_inset
, y decimos que
diff --git a/ac/n1.lyx b/ac/n1.lyx
index 3cbfecf..c64daaf 100644
--- a/ac/n1.lyx
+++ b/ac/n1.lyx
@@ -799,7 +799,7 @@ status open
\backslash
-begin{reminder}{ga}
+begin{reminder}{GyA}
\end_layout
\end_inset
@@ -3379,7 +3379,7 @@ Dado un espacio topológico
\end_inset
,
-\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$
+\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$
\end_inset
es un subanillo de
@@ -3404,7 +3404,7 @@ Dado un espacio vectorial
\end_inset
,
-\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$
+\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$
\end_inset
es un subanillo de
@@ -3433,7 +3433,7 @@ Dado un anillo
\end_inset
,
-\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$
+\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$
\end_inset
es un subanillo de
@@ -3893,7 +3893,7 @@ ideal de
a
\begin_inset Formula
\[
-(S)\coloneqq\bigcap\{I\trianglelefteq A:S\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}},
+(S)\coloneqq\bigcap\{I\trianglelefteq A\mid S\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}},
\]
\end_inset
@@ -3912,7 +3912,7 @@ conjunto generador
.
En efecto,
-\begin_inset Formula $\bigcap\{I\trianglelefteq A:S\subseteq I\}$
+\begin_inset Formula $\bigcap\{I\trianglelefteq A\mid S\subseteq I\}$
\end_inset
es un ideal de
@@ -5609,7 +5609,7 @@ Dado un homomorfismo de anillos
, la extensión es una biyección
\begin_inset Formula
\[
-\{I\trianglelefteq A:\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\},
+\{I\trianglelefteq A\mid\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\},
\]
\end_inset
@@ -5715,7 +5715,7 @@ Si
es la proyección canónica,
\begin_inset Formula
\[
-\rho:\{J\trianglelefteq A:I\subseteq J\}\to\{K\trianglelefteq A/I\}
+\rho:\{J\trianglelefteq A\mid I\subseteq J\}\to\{K\trianglelefteq A/I\}
\]
\end_inset
@@ -5821,7 +5821,7 @@ Hay tantos ideales de
\end_inset
y
-\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}:(n)\subseteq I\}$
+\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}\mid(n)\subseteq I\}$
\end_inset
, pero
@@ -6810,11 +6810,11 @@ espectro maximal
\end_inset
, la biyección
-\begin_inset Formula $\{J\in{\cal L}(A):I\subseteq J\}\to{\cal L}(A/I)$
+\begin_inset Formula $\{J\in{\cal L}(A)\mid I\subseteq J\}\to{\cal L}(A/I)$
\end_inset
del teorema de la correspondencia se restringe a una biyección
-\begin_inset Formula $\{J\in\text{MaxSpec}(A):I\subseteq J\}\to\text{MaxSpec}(A/I)$
+\begin_inset Formula $\{J\in\text{MaxSpec}(A)\mid I\subseteq J\}\to\text{MaxSpec}(A/I)$
\end_inset
.
@@ -6911,7 +6911,7 @@ Si
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A:I\subseteq J\}$
+\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A\mid I\subseteq J\}$
\end_inset
,
@@ -7037,7 +7037,7 @@ radical de Jacobson
\end_inset
a
-\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A:1+(a)\subseteq A^{*}\}$
+\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A\mid1+(a)\subseteq A^{*}\}$
\end_inset
.
@@ -7543,11 +7543,11 @@ espectro primo
\end_inset
, la biyección
-\begin_inset Formula $\{J\in{\cal L}(A):I\subseteq J\}\to{\cal L}(A/I)$
+\begin_inset Formula $\{J\in{\cal L}(A)\mid I\subseteq J\}\to{\cal L}(A/I)$
\end_inset
se restringe a una biyección
-\begin_inset Formula $\{J\in\text{Spec}(A):I\subseteq J\}\to\text{Spec}(A/I)$
+\begin_inset Formula $\{J\in\text{Spec}(A)\mid I\subseteq J\}\to\text{Spec}(A/I)$
\end_inset
.
@@ -7992,7 +7992,7 @@ primo minimal sobre
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A:I\subseteq P\subseteq Q\}$
+\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A\mid I\subseteq P\subseteq Q\}$
\end_inset
,
@@ -8363,7 +8363,7 @@ Lema de Krull:
\end_layout
\begin_layout Enumerate
-\begin_inset Formula ${\cal L}_{I,S}\coloneqq\{J\trianglelefteq A:I\subseteq J,J\cap S=\emptyset\}$
+\begin_inset Formula ${\cal L}_{I,S}\coloneqq\{J\trianglelefteq A\mid I\subseteq J,J\cap S=\emptyset\}$
\end_inset
es un conjunto inductivo no vacío.
@@ -8490,7 +8490,7 @@ radical
a
\begin_inset Formula
\[
-\sqrt{I}\coloneqq\{x\in A:\exists n\in\mathbb{N}:x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A:I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A:I\subseteq J\},
+\sqrt{I}\coloneqq\{x\in A\mid\exists n\in\mathbb{N}\mid x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A\mid I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A\mid I\subseteq J\},
\]
\end_inset
@@ -8785,7 +8785,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
@@ -9338,11 +9338,11 @@ polinomios constantes
\end_inset
,
-\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$
+\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$
\end_inset
e
-\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$
+\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
\end_inset
son ideales de
@@ -9366,7 +9366,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -9916,7 +9916,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid(X-a)^{k}\mid f\}$
\end_inset
.
@@ -10448,7 +10448,7 @@ Definimos
\end_inset
,
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y para
diff --git a/ac/n2.lyx b/ac/n2.lyx
index d1f9070..07960c8 100644
--- a/ac/n2.lyx
+++ b/ac/n2.lyx
@@ -771,7 +771,7 @@ Para
\end_inset
, los
-\begin_inset Formula $I_{n}\coloneqq\{a:\forall k>n,a_{k}=0\}$
+\begin_inset Formula $I_{n}\coloneqq\{a\mid \forall k>n,a_{k}=0\}$
\end_inset
cumplen
@@ -779,7 +779,7 @@ Para
\end_inset
y los
-\begin_inset Formula $J_{n}\coloneqq\{a:\forall k<n,a_{k}=0\}$
+\begin_inset Formula $J_{n}\coloneqq\{a\mid \forall k<n,a_{k}=0\}$
\end_inset
cumplen
@@ -1333,7 +1333,7 @@ Dados
\end_inset
, llamamos
-\begin_inset Formula $(I:S)=\{a\in A:aS\subseteq I\}$
+\begin_inset Formula $(I:S)=\{a\in A\mid aS\subseteq I\}$
\end_inset
.
@@ -1491,7 +1491,7 @@ anulador
\end_inset
a
-\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A:aX=0\}$
+\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A\mid aX=0\}$
\end_inset
, y entonces
@@ -1719,7 +1719,7 @@ Claramente
\end_layout
\begin_layout Standard
-\begin_inset Formula $(P:(a))=\{c\in A:c(a)=(ca)\subseteq P\}=\{c\in A:ac\in P\}$
+\begin_inset Formula $(P:(a))=\{c\in A\mid c(a)=(ca)\subseteq P\}=\{c\in A\mid ac\in P\}$
\end_inset
, y entonces
@@ -2218,7 +2218,7 @@ dimensión de Krull
es
\begin_inset Formula
\[
-\dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}:\exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A:P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\},
+\dim A\coloneqq\text{Kdim}A\coloneqq\sup\{n\in\mathbb{N}\mid \exists P_{0},\dots,P_{n}\trianglelefteq_{\text{p}}A:P_{0}\subsetneq\dots\subsetneq P_{n}\}\in\mathbb{N}\cup\{\infty\},
\]
\end_inset
@@ -2443,7 +2443,7 @@ Dado
.
Si no lo fuera,
-\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A:KI\neq0\}\neq\emptyset$
+\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A\mid KI\neq0\}\neq\emptyset$
\end_inset
, pues
diff --git a/ac/n3.lyx b/ac/n3.lyx
index 0293687..845df67 100644
--- a/ac/n3.lyx
+++ b/ac/n3.lyx
@@ -304,7 +304,7 @@ anulador
\end_inset
a
-\begin_inset Formula $\text{ann}_{M}(X)\coloneqq\{m\in M:Xm=0\}\leq_{A}M$
+\begin_inset Formula $\text{ann}_{M}(X)\coloneqq\{m\in M\mid Xm=0\}\leq_{A}M$
\end_inset
.
@@ -339,7 +339,7 @@ externa
)
\begin_inset Formula
\[
-\bigoplus_{i\in I}M_{i}\coloneqq\left\{ x\in\prod_{i\in I}M_{i}:\{i\in I:x_{i}\neq0\}\text{ finito}\right\} .
+\bigoplus_{i\in I}M_{i}\coloneqq\left\{ x\in\prod_{i\in I}M_{i}\;\middle|\;\{i\in I\mid x_{i}\neq0\}\text{ finito}\right\} .
\]
\end_inset
@@ -645,7 +645,7 @@ Si
\end_inset
,
-\begin_inset Formula $\{f\in A[X]:\text{gr}f\leq n\}$
+\begin_inset Formula $\{f\in A[X]\mid\text{gr}f\leq n\}$
\end_inset
es un submódulo de
@@ -1296,7 +1296,7 @@ Si
\end_inset
,
-\begin_inset Formula $_{A/I}\text{Mod}\equiv\{M\in_{A}\text{Mod}:IM=0\}$
+\begin_inset Formula $_{A/I}\text{Mod}\equiv\{M\in_{A}\text{Mod}\mid IM=0\}$
\end_inset
por la biyección
diff --git a/aec/n.pdf b/aec/n.pdf
deleted file mode 100755
index d5293be..0000000
--- a/aec/n.pdf
+++ /dev/null
Binary files differ
diff --git a/aed1/graph.eps b/aed1/graph.eps
new file mode 100644
index 0000000..79fafd8
--- /dev/null
+++ b/aed1/graph.eps
Binary files differ
diff --git a/aed1/n2.lyx b/aed1/n2.lyx
index 26201e5..22a657a 100644
--- a/aed1/n2.lyx
+++ b/aed1/n2.lyx
@@ -303,7 +303,7 @@ Diccionario[
(k,v,d)\overset{k\notin\text{Dom}(d)}{\mapsto}D\cup\{(k,v)\} & (k,d)\overset{k\in\text{Dom}(d)}{\mapsto}d(k)\\
\mathsf{}\\
\mathsf{Suprime}:T_{k}\times D\rightarrow D & \mathsf{Vacío}:\rightarrow D\\
-(k,d)\mapsto\{(a,b)\in d:a\neq k\} & \mapsto\emptyset
+(k,d)\mapsto\{(a,b)\in d\mid a\neq k\} & \mapsto\emptyset
\end{array}
\]
@@ -373,7 +373,7 @@ Abierta
cubetas
\series default
, que contienen los elementos
-\begin_inset Formula $\{e\in c:h(e)=k\}$
+\begin_inset Formula $\{e\in c\mid h(e)=k\}$
\end_inset
, siendo
diff --git a/aed1/n4.lyx b/aed1/n4.lyx
index db68fda..3e1e0aa 100644
--- a/aed1/n4.lyx
+++ b/aed1/n4.lyx
@@ -107,7 +107,7 @@ nodos
aristas
\series default
-\begin_inset Formula $E\subseteq\{(a,b)\in V\times V:a\neq b\}$
+\begin_inset Formula $E\subseteq\{(a,b)\in V\times V\mid a\neq b\}$
\end_inset
, mientras que uno
@@ -123,7 +123,7 @@ no dirigido
\end_inset
y
-\begin_inset Formula $E\subseteq\{x\in{\cal P}(V):|x|=2\}$
+\begin_inset Formula $E\subseteq\{x\in{\cal P}(V)\mid |x|=2\}$
\end_inset
.
@@ -136,7 +136,7 @@ bucles
\end_inset
para que el grafo sea dirigido o que
-\begin_inset Formula $E\subseteq\{x\in{\cal P}(V):|x|\in\{1,2\}\}$
+\begin_inset Formula $E\subseteq\{x\in{\cal P}(V)\mid |x|\in\{1,2\}\}$
\end_inset
para que sea no dirigido.
@@ -374,7 +374,7 @@ grado
\end_inset
es el número de arcos adyacentes a él (
-\begin_inset Formula $|\{X\in E:v\in X\}|$
+\begin_inset Formula $|\{X\in E\mid v\in X\}|$
\end_inset
), mientras que en uno dirigido
@@ -390,7 +390,7 @@ grado de entrada
\end_inset
como
-\begin_inset Formula $|\{(a,b)\in A:b=v\}|$
+\begin_inset Formula $|\{(a,b)\in A\mid b=v\}|$
\end_inset
y el
@@ -398,7 +398,7 @@ grado de entrada
grado de salida
\series default
como
-\begin_inset Formula $|\{(a,b)\in A:a=v\}|$
+\begin_inset Formula $|\{(a,b)\in A\mid a=v\}|$
\end_inset
.
@@ -419,7 +419,7 @@ Operaciones elementales:
((V,E),v)\mapsto(V\cup\{v\},E) & ((V,E),(a,b))\overset{a,b\in V}{\mapsto}(V,E\cup\{e\})\\
\\
\mathsf{EliminarNodo}:G\times{\cal U}\rightarrow G & \mathsf{EliminarArista}:G\times({\cal U}\times{\cal U})\rightarrow G\\
-((V,E),v)\mapsto(V\backslash\{e\},\{(a,b)\in E:a,b\neq v\}) & ((V,E),e)\mapsto(V,E\backslash\{e\})\\
+((V,E),v)\mapsto(V\backslash\{e\},\{(a,b)\in E\mid a,b\neq v\}) & ((V,E),e)\mapsto(V,E\backslash\{e\})\\
\\
\mathsf{ConsultarArista}:G\times({\cal U}\times{\cal U})\rightarrow B\\
((V,E),(a,b))\mapsto(a,b)\in A
@@ -456,8 +456,9 @@ status open
\begin_layout Plain Layout
\align center
-\begin_inset Graphics
- filename graph.svg
+\begin_inset External
+ template VectorGraphics
+ filename graph.eps
scale 60
\end_inset
@@ -508,7 +509,7 @@ En un ordenador podemos representar un grafo finito
\end_inset
o
-\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma:E\rightarrow X)$
+\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma\mid E\rightarrow X)$
\end_inset
mediante:
@@ -594,12 +595,12 @@ Listas de adyacencia
(representados como listas enlazadas en una lista contigua) de los que
-\begin_inset Formula $C_{i}=\{j:(i,j)\in E\}$
+\begin_inset Formula $C_{i}=\{j\mid(i,j)\in E\}$
\end_inset
.
Si el grafo es etiquetado,
-\begin_inset Formula $C_{i}=\{(j,\sigma(i,j)):(i,j)\in E\}$
+\begin_inset Formula $C_{i}=\{(j,\sigma(i,j))\mid(i,j)\in E\}$
\end_inset
.
@@ -617,7 +618,7 @@ Listas de adyacencia
\begin_layout Standard
En adelante, salvo que se indique lo contrario, suponemos un grafo
-\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma:E\rightarrow X)$
+\begin_inset Formula $(V:=\{1,\dots,n\},E,\sigma\mid E\rightarrow X)$
\end_inset
, y que las variables en pseudocódigo se inicializan con su valor por defecto.
@@ -2586,7 +2587,7 @@ grafo reducido
\end_inset
y
-\begin_inset Formula $E_{R}:=\{(A,B)\in V_{R}:\exists a\in A,b\in B:(a,b)\in E\}$
+\begin_inset Formula $E_{R}:=\{(A,B)\in V_{R}\mid \exists a\in A,b\in B:(a,b)\in E\}$
\end_inset
.
diff --git a/aed2/n.pdf b/aed2/n.pdf
deleted file mode 100644
index a7d382d..0000000
--- a/aed2/n.pdf
+++ /dev/null
Binary files differ
diff --git a/af/n1.lyx b/af/n1.lyx
index e557567..ee9193e 100644
--- a/af/n1.lyx
+++ b/af/n1.lyx
@@ -258,7 +258,7 @@ espacio normado
\end_inset
, y llamamos
-\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X:\Vert x\Vert\leq1\}$
+\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X\mid \Vert x\Vert\leq1\}$
\end_inset
y conjunto de
@@ -266,7 +266,7 @@ espacio normado
vectores unitarios
\series default
a
-\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X:\Vert x\Vert=1\}$
+\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X\mid \Vert x\Vert=1\}$
\end_inset
.
@@ -2655,7 +2655,7 @@ topología cociente
\end_inset
a
-\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$
+\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$
\end_inset
, donde
@@ -3615,7 +3615,7 @@ Por isomorfismo podemos suponer que el dominio es
\end_inset
,
-\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}:\sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$
+\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}\mid \sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$
\end_inset
.
diff --git a/algl/n1.lyx b/algl/n1.lyx
index 47d85c9..da5b457 100644
--- a/algl/n1.lyx
+++ b/algl/n1.lyx
@@ -242,7 +242,7 @@ unidad:
Inverso para el producto:
\series default
-\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a'':a\cdot a''=1$
+\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a''\mid a\cdot a''=1$
\end_inset
;
@@ -1062,7 +1062,7 @@ Si
\end_inset
, el conjunto
-\begin_inset Formula $\mathcal{F}(\mathcal{S},K)=\{f:\mathcal{S}\rightarrow K\}$
+\begin_inset Formula $\mathcal{F}(\mathcal{S},K)=\{f\mid \mathcal{S}\rightarrow K\}$
\end_inset
, formado por todas las aplicaciones de
@@ -1087,7 +1087,7 @@ Si
-espacio vectorial.
Con estas mismas operaciones, el conjunto
-\begin_inset Formula $\mathcal{C}([a,b],\mathbb{R})=\{f:[a,b]\rightarrow\mathbb{R}|f\text{ continua}\}$
+\begin_inset Formula $\mathcal{C}([a,b],\mathbb{R})=\{f\mid [a,b]\rightarrow\mathbb{R}|f\text{ continua}\}$
\end_inset
es un
@@ -1320,7 +1320,7 @@ Los subconjuntos
.
También lo es
-\begin_inset Formula $U_{a,b}=\{f\in\mathcal{C}([a,b],\mathbb{R}):f(a)=f(b)\}$
+\begin_inset Formula $U_{a,b}=\{f\in\mathcal{C}([a,b],\mathbb{R})\mid f(a)=f(b)\}$
\end_inset
respecto de
@@ -1738,7 +1738,7 @@ base canónica
\end_inset
y 0 en el resto, entonces
-\begin_inset Formula $\{A_{ij}:1\leq i\leq m,1\leq j\leq n\}$
+\begin_inset Formula $\{A_{ij}\mid 1\leq i\leq m,1\leq j\leq n\}$
\end_inset
es base de
diff --git a/algl/n4.lyx b/algl/n4.lyx
index cf26416..a0f5c5f 100644
--- a/algl/n4.lyx
+++ b/algl/n4.lyx
@@ -1095,7 +1095,7 @@ Llamamos
filas o columnas:
\begin_inset Formula
\[
-\chi_{r}=\{(i_{1},\dots,i_{r}):1\leq i_{1}<\dots<i_{r}\leq n\}
+\chi_{r}=\{(i_{1},\dots,i_{r})\mid 1\leq i_{1}<\dots<i_{r}\leq n\}
\]
\end_inset
diff --git a/algl/n5.lyx b/algl/n5.lyx
index bb844d5..963ebd6 100644
--- a/algl/n5.lyx
+++ b/algl/n5.lyx
@@ -526,7 +526,7 @@ Los vectores propios de
.
Así,
-\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$
+\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$
\end_inset
es el
diff --git a/anm/n1.lyx b/anm/n1.lyx
index 5e90765..b001a5b 100644
--- a/anm/n1.lyx
+++ b/anm/n1.lyx
@@ -1519,7 +1519,7 @@ Queremos ver que
.
Si
-\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V:v\bot E_{k-1}\}$
+\begin_inset Formula $E_{k-1}^{\bot}:=\{v\in V\mid v\bot E_{k-1}\}$
\end_inset
, basta ver que para todo subespacio
@@ -1860,7 +1860,7 @@ Sea
\begin_deeper
\begin_layout Standard
-\begin_inset Formula $\sup\{\Vert Ax\Vert:\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}:\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|:\sum_{i}|x_{i}|=1\}$
+\begin_inset Formula $\sup\{\Vert Ax\Vert\mid\Vert x\Vert=1\}=\sup\{\sum_{k}|Ax|_{k}\mid\sum_{k}|x_{k}|=1\}=\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}$
\end_inset
.
@@ -1889,7 +1889,7 @@ Sea
\end_inset
luego
-\begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|:\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$
+\begin_inset Formula $\sup\{\sum_{k,i}|a_{ki}||x_{i}|\mid\sum_{i}|x_{i}|=1\}=\max_{i}\sum_{k}|a_{ki}|$
\end_inset
.
@@ -1922,10 +1922,14 @@ luego
\begin_deeper
\begin_layout Standard
-\begin_inset Formula $\Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}:\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x):\Vert x\Vert_{2}=1\right\} $
+\begin_inset Formula
+\[
+\Vert A\Vert_{2}^{2}=\sup\left\{ \frac{\Vert Ax\Vert_{2}^{2}}{\Vert x\Vert_{2}^{2}}\;\middle|\;\Vert x\Vert_{2}=1\right\} =\sup\left\{ \frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\frac{\langle A^{*}Ax,x\rangle}{\langle x,x\rangle}=R_{A^{*}A}(x)\;\middle|\;\Vert x\Vert_{2}=1\right\} ,
+\]
+
\end_inset
-, pero si
+ pero si
\begin_inset Formula $\lambda_{1},\dots,\lambda_{m}\geq0$
\end_inset
@@ -1938,7 +1942,7 @@ luego
\end_inset
son los subespacios propios asociados,
-\begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v):v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v):v\neq0\}$
+\begin_inset Formula $\rho(A^{*}A)=\max\{\lambda_{1},\dots,\lambda_{m}\}=\max_{k=1}^{m}\max\{R_{A^{*}A}(v)\mid v\in E_{k}\setminus\{0\}\}=\max\{R_{A^{*}A}(v)\mid v\neq0\}$
\end_inset
, y como
@@ -1950,7 +1954,7 @@ R_{A^{*}A}(v)=\frac{\langle Av,v\rangle}{\langle v,v\rangle}=\left\langle A\frac
\end_inset
queda
-\begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v):v\neq0\}=\max\{R_{A^{*}A}(v):\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$
+\begin_inset Formula $\rho(A^{*}A)=\max\{R_{A^{*}A}(v)\mid v\neq0\}=\max\{R_{A^{*}A}(v)\mid\Vert v\Vert_{2}=1\}=\Vert A\Vert_{2}^{2}$
\end_inset
.
@@ -1968,8 +1972,8 @@ queda
\begin_layout Standard
\begin_inset Formula
\begin{align*}
-\Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}:\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}:\max_{k}|x_{k}|=1\}=\\
- & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|:\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|:\max_{i}|x_{i}|=1\right\} .
+\Vert A\Vert_{\infty} & =\sup\{\Vert Ax\Vert_{\infty}\mid\Vert x\Vert_{\infty}=1\}=\sup\{\max_{k}|Ax|_{k}\mid\max_{k}|x_{k}|=1\}=\\
+ & =\sup\left\{ \max_{k}\left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} =\max_{k}\sup\left\{ \left|\sum_{i}a_{ki}x_{i}\right|\;\middle|\;\max_{i}|x_{i}|=1\right\} .
\end{align*}
\end_inset
@@ -1995,7 +1999,7 @@ queda
\end_inset
, con lo que
-\begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|:\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$
+\begin_inset Formula $\sup\{|\sum_{i}a_{ki}x_{i}|\mid\max_{i}|x_{i}|=1\}=\left|\sum_{i}|a_{ki}|\right|=\sum_{i}|a_{ki}|$
\end_inset
, luego
@@ -2211,7 +2215,7 @@ La diagonal no cambia, la matriz sigue siendo triangular superior y, para
\end_deeper
\begin_layout Standard
De aquí que
-\begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert:\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$
+\begin_inset Formula $\rho(A)=\inf\{\Vert A\Vert\mid\Vert\cdot\Vert\text{ es una norma matricial en }{\cal M}_{n}(\mathbb{K})\}$
\end_inset
.
diff --git a/anm/n2.lyx b/anm/n2.lyx
index 7bfe502..df93e7b 100644
--- a/anm/n2.lyx
+++ b/anm/n2.lyx
@@ -2722,7 +2722,7 @@ Si
Demostración:
\series default
Sea
-\begin_inset Formula $K:=\{g\in G:\Vert f-g\Vert\leq\Vert f\Vert\}$
+\begin_inset Formula $K:=\{g\in G\mid \Vert f-g\Vert\leq\Vert f\Vert\}$
\end_inset
,
diff --git a/anm/n3.lyx b/anm/n3.lyx
index 0f1f3d2..518b2a3 100644
--- a/anm/n3.lyx
+++ b/anm/n3.lyx
@@ -907,7 +907,7 @@ Demostración:
.
En dimensión finita,
-\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}:\Vert v\Vert_{A}=1\}$
+\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$
\end_inset
.
diff --git a/anm/na.lyx b/anm/na.lyx
index f60a92d..d0f6418 100644
--- a/anm/na.lyx
+++ b/anm/na.lyx
@@ -1769,7 +1769,7 @@ A
\emph default
es vector, devuelve una matriz diagonal con elementos del vector en la
diagonal
-\begin_inset Formula $\{(i,j):i+k=j\}$
+\begin_inset Formula $\{(i,j)\mid i+k=j\}$
\end_inset
, y de lo contrario devuelve un vector con los elementos de dicha diagonal
diff --git a/aoc/n3.lyx b/aoc/n3.lyx
index 940873f..278feb8 100644
--- a/aoc/n3.lyx
+++ b/aoc/n3.lyx
@@ -1722,7 +1722,7 @@ nodos
hiperarcos
\series default
-\begin_inset Formula $H\subseteq\{(A,B)\in{\cal P}(V)\times{\cal P}(V):A,B\neq\emptyset\}$
+\begin_inset Formula $H\subseteq\{(A,B)\in{\cal P}(V)\times{\cal P}(V)\mid A,B\neq\emptyset\}$
\end_inset
.
diff --git a/ar/n.pdf b/ar/n.pdf
deleted file mode 100755
index ea5d2a3..0000000
--- a/ar/n.pdf
+++ /dev/null
Binary files differ
diff --git a/bd/n5.lyx b/bd/n5.lyx
index b225022..ba71168 100644
--- a/bd/n5.lyx
+++ b/bd/n5.lyx
@@ -234,12 +234,16 @@ Claves Ajenas
\family sans
(lista numerada de
+\lang english
+
\begin_inset Quotes cld
\end_inset
(
\emph on
-atributo
+a
+\lang spanish
+tributo
\emph default
, ...) Referencia_a
\emph on
@@ -249,7 +253,9 @@ NOMBRE_TABLA
\emph on
atributo_clave
\emph default
-, ...)
+, ...
+\lang english
+)
\begin_inset Quotes crd
\end_inset
@@ -269,18 +275,23 @@ Derivado
\family sans
(lista numerada de
+\lang english
+
\begin_inset Quotes cld
\end_inset
\emph on
-atributo
+a
+\lang spanish
+tributo
\emph default
=
\emph on
-fórmula
+fórmul
\emph default
-
+\lang english
+a
\begin_inset Quotes crd
\end_inset
diff --git a/bd/n6.lyx b/bd/n6.lyx
index ced2c05..29cc82f 100644
--- a/bd/n6.lyx
+++ b/bd/n6.lyx
@@ -4639,7 +4639,7 @@ condición
\end_inset
es una condición,
-\begin_inset Formula $\sigma_{C}(R):=(\{r\in R:C(r)\},T,N)$
+\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$
\end_inset
, donde
@@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa
Reunión natural
\series default
: Sea
-\begin_inset Formula $\{j_{1},\dots,j_{p}\}:=\{j:M_{j}\notin\{N_{i}\}\}$
+\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$
\end_inset
, si para
@@ -4805,7 +4805,7 @@ Reunión natural
, entonces
\begin_inset Formula
\[
-R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}}):r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).
+R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).
\]
\end_inset
@@ -4836,7 +4836,7 @@ reunión externa izquierda
\end_inset
como
-\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R:\nexists s\in S:C(r,s)\}\times N_{m})$
+\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$
\end_inset
, la
@@ -4844,7 +4844,7 @@ reunión externa izquierda
reunión externa derecha
\series default
como
-\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S:\nexists r\in R:C(r,s)\})$
+\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$
\end_inset
y la
@@ -4870,7 +4870,7 @@ División
, entonces
\begin_inset Formula
\[
-R\div S:=(\{r:\forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).
+R\div S:=(\{r\mid \forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).
\]
\end_inset
@@ -5220,7 +5220,7 @@ segura
\end_inset
se refiere al conjunto
-\begin_inset Formula $\{T:t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$
+\begin_inset Formula $\{T\mid t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$
\end_inset
.
diff --git a/bd/n7.lyx b/bd/n7.lyx
index ca42d0c..8f29a15 100644
--- a/bd/n7.lyx
+++ b/bd/n7.lyx
@@ -917,6 +917,8 @@ sideways false
status open
\begin_layout Plain Layout
+
+\lang english
\begin_inset ERT
status open
@@ -1092,6 +1094,8 @@ in C$}{rehacer $e$}
\end_inset
+\lang spanish
+
\begin_inset Caption Standard
\begin_layout Plain Layout
diff --git a/cc/n1.lyx b/cc/n1.lyx
index 0d3ecb2..ee9fa3c 100644
--- a/cc/n1.lyx
+++ b/cc/n1.lyx
@@ -901,7 +901,7 @@ Una
forma sentencial
\series default
es un elemento de
-\begin_inset Formula $D(G):=\{\alpha\in(V_{N}\cup V_{T})^{*}:S\Rightarrow^{*}\alpha\}$
+\begin_inset Formula $D(G):=\{\alpha\in(V_{N}\cup V_{T})^{*}\mid S\Rightarrow^{*}\alpha\}$
\end_inset
, y una
diff --git a/cc/n3.lyx b/cc/n3.lyx
index 6321080..d1b4fd9 100644
--- a/cc/n3.lyx
+++ b/cc/n3.lyx
@@ -742,7 +742,7 @@ Dada una GLC
como
\begin_inset Formula
\[
-\mathsf{PRIMERO}(\alpha):=\{a\in V_{T}:\exists\beta:\alpha\Rightarrow^{*}a\beta\}\cup\{\lambda:\alpha\Rightarrow^{*}\lambda\}.
+\mathsf{PRIMERO}(\alpha):=\{a\in V_{T}\mid \exists\beta:\alpha\Rightarrow^{*}a\beta\}\cup\{\lambda\mid \alpha\Rightarrow^{*}\lambda\}.
\]
\end_inset
@@ -986,7 +986,7 @@ noprefix "false"
\begin_inset Formula
\begin{multline*}
\mathsf{PRIMERO}(X_{1}\cdots X_{n})=\\
-=\bigcup_{i=1}^{\min(\{i:X_{1}\cdots X_{i}\nRightarrow^{*}\lambda\}\cup\{n\})}(\sigma(X_{i})\setminus\{\lambda\})\cup\{\lambda:X_{1}\cdots X_{n}\Rightarrow^{*}\lambda\}.
+=\bigcup_{i=1}^{\min(\{i\mid X_{1}\cdots X_{i}\nRightarrow^{*}\lambda\}\cup\{n\})}(\sigma(X_{i})\setminus\{\lambda\})\cup\{\lambda\mid X_{1}\cdots X_{n}\Rightarrow^{*}\lambda\}.
\end{multline*}
\end_inset
@@ -1250,7 +1250,7 @@ Definimos
como
\begin_inset Formula
\[
-\mathsf{SIGUIENTE}(A):=\{a\in V_{T}:\exists\alpha,\beta:S\Rightarrow^{+}\alpha Aa\beta\}\cup\{\$:\exists\alpha:S\Rightarrow^{*}\alpha A\},
+\mathsf{SIGUIENTE}(A):=\{a\in V_{T}\mid \exists\alpha,\beta:S\Rightarrow^{+}\alpha Aa\beta\}\cup\{\$\mid \exists\alpha\mid S\Rightarrow^{*}\alpha A\},
\]
\end_inset
@@ -3251,7 +3251,7 @@ Si, para
\end_inset
,
-\begin_inset Formula $\rho(I):=\{R:\exists a\in V_{T}:[R,a]\in I\}$
+\begin_inset Formula $\rho(I):=\{R\mid \exists a\in V_{T}\mid [R,a]\in I\}$
\end_inset
, para
@@ -5179,7 +5179,7 @@ tabla de análisis
\end_inset
dada por
-\begin_inset Formula $M(A,a):=\{A\to\alpha\in P:a\in\mathsf{Predict}(A\to\alpha)\}$
+\begin_inset Formula $M(A,a):=\{A\to\alpha\in P\mid a\in\mathsf{Predict}(A\to\alpha)\}$
\end_inset
, que a cada no terminal a derivar y terminal siguiente en la entrada le
diff --git a/cn/n.pdf b/cn/n.pdf
deleted file mode 100755
index 6264062..0000000
--- a/cn/n.pdf
+++ /dev/null
Binary files differ
diff --git a/cyn/n1.lyx b/cyn/n1.lyx
index 21cc0c8..d1f538e 100644
--- a/cyn/n1.lyx
+++ b/cyn/n1.lyx
@@ -608,11 +608,11 @@ Una familia de conjuntos es una colección
Unión arbitraria:
\series default
-\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}:x\in A\}$
+\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}\mid x\in A\}$
\end_inset
;
-\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I:x\in A_{i}\}$
+\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I\mid x\in A_{i}\}$
\end_inset
@@ -624,11 +624,11 @@ Unión arbitraria:
Intersección arbitraria:
\series default
-\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}:x\in A\}$
+\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}\mid x\in A\}$
\end_inset
;
-\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I:x\in A_{i}\}$
+\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I\mid x\in A_{i}\}$
\end_inset
@@ -888,7 +888,7 @@ Conjunto final:
Dominio:
\series default
-\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B:(a,b)\in R\}$
+\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B\mid (a,b)\in R\}$
\end_inset
.
@@ -900,7 +900,7 @@ Dominio:
Imagen:
\series default
-\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A:(a,b)\in R\}$
+\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A\mid (a,b)\in R\}$
\end_inset
.
diff --git a/cyn/n2.lyx b/cyn/n2.lyx
index 386c747..bc13575 100644
--- a/cyn/n2.lyx
+++ b/cyn/n2.lyx
@@ -121,7 +121,7 @@ aplicación
\end_inset
, de modo que
-\begin_inset Formula $f=\{(n,n^{2}):n\in\mathbb{N}\}$
+\begin_inset Formula $f=\{(n,n^{2})\mid n\in\mathbb{N}\}$
\end_inset
.
@@ -221,7 +221,7 @@ imagen directa
\end_inset
:
-\begin_inset Formula $\text{Im}f=f(A)=\{b\in B:\exists a:f(a)=b\}\subseteq B$
+\begin_inset Formula $\text{Im}f=f(A)=\{b\in B\mid\exists a\mid f(a)=b\}\subseteq B$
\end_inset
.
@@ -1359,7 +1359,7 @@ producto directo
como el conjunto
\begin_inset Formula
\[
-\prod_{i\in I}A_{i}=\left\{ f:I\rightarrow\cup_{i\in I}:f(i)\in A_{i}\forall i\in I\right\}
+\prod_{i\in I}A_{i}=\left\{ f\mid I\rightarrow\bigcup_{i\in I}\;\middle|\;f(i)\in A_{i}\forall i\in I\right\}
\]
\end_inset
@@ -1383,7 +1383,7 @@ Si
es finito y se escribe como una lista, podemos escribir el conjunto como
-\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n}):x_{i}\in A_{i},i=1,\dots,n\}$
+\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n})\mid x_{i}\in A_{i},i=1,\dots,n\}$
\end_inset
.
@@ -1420,7 +1420,7 @@ Sean
\end_inset
y un conjunto de biyecciones
-\begin_inset Formula $\{f_{i}:A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$
+\begin_inset Formula $\{f_{i}\mid A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$
\end_inset
, entonces existe una biyección
diff --git a/cyn/n4.lyx b/cyn/n4.lyx
index 50a4550..52b35f2 100644
--- a/cyn/n4.lyx
+++ b/cyn/n4.lyx
@@ -125,7 +125,7 @@ Sea
\end_inset
, su clase de equivalencia es
-\begin_inset Formula $[a]=\{b\in A:a\sim b\}$
+\begin_inset Formula $[a]=\{b\in A\mid a\sim b\}$
\end_inset
.
diff --git a/cyn/n5.lyx b/cyn/n5.lyx
index 0315b5a..9264de2 100644
--- a/cyn/n5.lyx
+++ b/cyn/n5.lyx
@@ -2100,7 +2100,7 @@ raíz
Así, todo número complejo tiene
\begin_inset Formula
\[
-\phi(n)=|\{m\in\{1,\dots,n-1\}:\text{mcd}(m,n)=1\}|
+\phi(n)=|\{m\in\{1,\dots,n-1\}\mid \text{mcd}(m,n)=1\}|
\]
\end_inset
diff --git a/cyn/n7.lyx b/cyn/n7.lyx
index 102ac10..525fc3d 100644
--- a/cyn/n7.lyx
+++ b/cyn/n7.lyx
@@ -201,7 +201,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}:x=a-bn\}\subseteq\mathbb{N}$
+\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}\mid x=a-bn\}\subseteq\mathbb{N}$
\end_inset
.
@@ -512,7 +512,7 @@ Dados
máximo común divisor
\series default
es
-\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}:d|a\land d|b\}$
+\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}\mid d|a\land d|b\}$
\end_inset
(excepción:
@@ -792,7 +792,7 @@ El máximo común divisor de
\end_inset
es
-\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}:\forall i,d|a_{i}\}$
+\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}\mid \forall i,d|a_{i}\}$
\end_inset
.
@@ -1071,7 +1071,7 @@ Dados
mínimo común múltiplo
\series default
es
-\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}:a|m\land b|m\}$
+\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}\mid a|m\land b|m\}$
\end_inset
.
@@ -1215,7 +1215,7 @@ El mínimo común múltiplo de
\end_inset
es
-\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}:\forall i,a_{i}|m\}$
+\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}\mid \forall i,a_{i}|m\}$
\end_inset
.
diff --git a/cyn/n8.lyx b/cyn/n8.lyx
index 1249714..b4589b3 100644
--- a/cyn/n8.lyx
+++ b/cyn/n8.lyx
@@ -453,7 +453,7 @@ divisor
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$
+\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}\mid A=\mu B$
\end_inset
.
diff --git a/ealg/n1.lyx b/ealg/n1.lyx
index 7068e05..a5d022d 100644
--- a/ealg/n1.lyx
+++ b/ealg/n1.lyx
@@ -223,7 +223,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -831,7 +831,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
@@ -968,7 +968,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
.
@@ -1875,7 +1875,7 @@ teorema
\end_inset
],
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y [...] si
@@ -3967,11 +3967,11 @@ Queremos ver que, para
.
Con esto, sean
-\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}:a_{i}\neq0\}$
+\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}\mid a_{i}\neq0\}$
\end_inset
,
-\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}:b_{j}\neq0\}$
+\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}\mid b_{j}\neq0\}$
\end_inset
,
diff --git a/ealg/n2.lyx b/ealg/n2.lyx
index a006108..cbcd97d 100644
--- a/ealg/n2.lyx
+++ b/ealg/n2.lyx
@@ -4611,7 +4611,7 @@ clausura algebraica
es
\begin_inset Formula
\[
-\overline{K}_{L}:=\{\alpha\in L:\alpha\text{ es algebraico sobre }K\}.
+\overline{K}_{L}:=\{\alpha\in L\mid \alpha\text{ es algebraico sobre }K\}.
\]
\end_inset
diff --git a/ealg/n4.lyx b/ealg/n4.lyx
index e9f8c50..4a46a08 100644
--- a/ealg/n4.lyx
+++ b/ealg/n4.lyx
@@ -1089,7 +1089,7 @@ grupo de Galois
\end_inset
lleva raíces a raíces y por tanto
-\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}:\{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$
+\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}\mid \{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$
\end_inset
es inyectiva por serlo
@@ -1491,7 +1491,7 @@ teorema
\end_inset
,
-\begin_inset Formula $K(\{\alpha\in\overline{K}:\exists f\in{\cal P}:f(\alpha)=0\})$
+\begin_inset Formula $K(\{\alpha\in\overline{K}\mid \exists f\in{\cal P}:f(\alpha)=0\})$
\end_inset
, por lo que existe un cuerpo de descomposición de
@@ -2010,7 +2010,7 @@ Para cada
\end_inset
elementos y viene dado por
-\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$
+\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$
\end_inset
.
@@ -2019,7 +2019,7 @@ Para cada
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$
+\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$
\end_inset
el conjunto de raíces de
diff --git a/ealg/n5.lyx b/ealg/n5.lyx
index a3eaed8..18c97fd 100644
--- a/ealg/n5.lyx
+++ b/ealg/n5.lyx
@@ -112,7 +112,7 @@ de uno
, y llamamos
\begin_inset Formula
\[
-{\cal U}_{n}(K):=\{\xi\in K:\xi^{n}=1\}=\{\xi\in K:o_{K^{*}}(\xi)\mid n\}.
+{\cal U}_{n}(K):=\{\xi\in K\mid \xi^{n}=1\}=\{\xi\in K\mid o_{K^{*}}(\xi)\mid n\}.
\]
\end_inset
diff --git a/ealg/n6.lyx b/ealg/n6.lyx
index 343a1ac..fd441a7 100644
--- a/ealg/n6.lyx
+++ b/ealg/n6.lyx
@@ -243,7 +243,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $R:=\{\alpha_{1}:=\alpha,\dots,\alpha_{m}\}$
+\begin_inset Formula $R:=\{\alpha_{1}\mid =\alpha,\dots,\alpha_{m}\}$
\end_inset
el conjunto de las raíces de
@@ -354,7 +354,7 @@ teorema
\end_inset
Sean
-\begin_inset Formula ${\cal P}:=\{f_{\alpha}:=\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$
+\begin_inset Formula ${\cal P}:=\{f_{\alpha}\mid =\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$
\end_inset
y
@@ -1107,7 +1107,7 @@ clausura normal
, y viene dada por
\begin_inset Formula
\[
-N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}:K\subseteq E\text{ normal}\}.
+N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}\mid K\subseteq E\text{ normal}\}.
\]
\end_inset
diff --git a/ealg/n7.lyx b/ealg/n7.lyx
index 2faa1a1..f5f15b6 100644
--- a/ealg/n7.lyx
+++ b/ealg/n7.lyx
@@ -83,7 +83,7 @@
\begin_layout Standard
\begin_inset Formula
\[
-\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K:\bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}.
+\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K\mid \bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}.
\]
\end_inset
@@ -139,8 +139,8 @@ conexión de Galois
dado por
\begin_inset Formula
\begin{align*}
-f(F):=F' & :=\{\sigma\in G:\forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\
-g(H):=H' & :=\{\alpha\in L:\forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma.
+f(F):=F' & :=\{\sigma\in G\mid \forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\
+g(H):=H' & :=\{\alpha\in L\mid \forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma.
\end{align*}
\end_inset
@@ -150,7 +150,7 @@ En particular, para
\end_inset
,
-\begin_inset Formula $K(\beta)'=\{\sigma\in G:\sigma(\beta)=\beta\}$
+\begin_inset Formula $K(\beta)'=\{\sigma\in G\mid \sigma(\beta)=\beta\}$
\end_inset
, y para
diff --git a/edo/n.pdf b/edo/n.pdf
deleted file mode 100644
index 88ff256..0000000
--- a/edo/n.pdf
+++ /dev/null
Binary files differ
diff --git a/epe/n.pdf b/epe/n.pdf
deleted file mode 100644
index d992aea..0000000
--- a/epe/n.pdf
+++ /dev/null
Binary files differ
diff --git a/fc/AND_ANSI_Labelled.svg b/fc/AND_ANSI_Labelled.svg
index ee294dc..5ee5c9c 100644
--- a/fc/AND_ANSI_Labelled.svg
+++ b/fc/AND_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/NAND_ANSI_Labelled.svg b/fc/NAND_ANSI_Labelled.svg
index 7f97027..719786a 100644
--- a/fc/NAND_ANSI_Labelled.svg
+++ b/fc/NAND_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/NOR_ANSI_Labelled.svg b/fc/NOR_ANSI_Labelled.svg
index 0fd18f9..01f63e4 100644
--- a/fc/NOR_ANSI_Labelled.svg
+++ b/fc/NOR_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/Not-gate-en.svg b/fc/Not-gate-en.svg
index daf957b..523d62d 100644
--- a/fc/Not-gate-en.svg
+++ b/fc/Not-gate-en.svg
Binary files differ
diff --git a/fc/OR_ANSI_Labelled.svg b/fc/OR_ANSI_Labelled.svg
index 6275ef9..05b61be 100644
--- a/fc/OR_ANSI_Labelled.svg
+++ b/fc/OR_ANSI_Labelled.svg
Binary files differ
diff --git a/fc/XOR_ANSI.svg b/fc/XOR_ANSI.svg
index 6f14e5b..4981dec 100644
--- a/fc/XOR_ANSI.svg
+++ b/fc/XOR_ANSI.svg
Binary files differ
diff --git a/fc/Xnor-gate-en.svg b/fc/Xnor-gate-en.svg
index b205563..2a18ed0 100644
--- a/fc/Xnor-gate-en.svg
+++ b/fc/Xnor-gate-en.svg
Binary files differ
diff --git a/fc/n1.lyx b/fc/n1.lyx
index d912189..abb69b9 100644
--- a/fc/n1.lyx
+++ b/fc/n1.lyx
@@ -134,9 +134,33 @@ esquema de Von Neumann
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\align center
\begin_inset Graphics
filename buses.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Esquema von Neumann en un ordenador moderno.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
@@ -749,10 +773,33 @@ Unified Extensible Firmware Interface
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename image.TZVI9Y.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Placa base de un ordenador de escritorio típico.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
diff --git a/fc/n3.lyx b/fc/n3.lyx
index 63254ed..c38761d 100644
--- a/fc/n3.lyx
+++ b/fc/n3.lyx
@@ -393,8 +393,9 @@ Puertas lógicas
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename AND_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename AND_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -541,8 +542,9 @@ AND
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename OR_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename OR_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -689,8 +691,9 @@ OR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename XOR_ANSI.svg
+\begin_inset External
+ template VectorGraphics
+ filename XOR_ANSI.pdf
height 14pt
\end_inset
@@ -730,8 +733,9 @@ XOR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename NAND_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename NAND_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -767,8 +771,9 @@ NAND
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename NOR_ANSI_Labelled.svg
+\begin_inset External
+ template VectorGraphics
+ filename NOR_ANSI_Labelled.pdf
height 14pt
\end_inset
@@ -804,8 +809,9 @@ NOR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename Xnor-gate-en.svg
+\begin_inset External
+ template VectorGraphics
+ filename Xnor-gate-en.pdf
height 14pt
\end_inset
@@ -909,8 +915,9 @@ XNOR
\begin_inset Text
\begin_layout Plain Layout
-\begin_inset Graphics
- filename Not-gate-en.svg
+\begin_inset External
+ template VectorGraphics
+ filename Not-gate-en.pdf
height 14pt
\end_inset
@@ -1047,6 +1054,12 @@ Circuito con
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename image.RAWR9Y.png
@@ -1057,6 +1070,23 @@ Circuito con
\end_layout
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Codificador.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Subsection
Decodificador
\end_layout
@@ -1075,6 +1105,12 @@ Circuito con
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename image.V5MB9Y.png
@@ -1085,6 +1121,23 @@ Circuito con
\end_layout
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Decodificador.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Podemos implementar una función con un decodificador conectando las salidas
correspondientes a un
@@ -1113,9 +1166,33 @@ Circuito con
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\align center
\begin_inset Graphics
filename image.0PXO9Y.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Multiplexores.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
@@ -1186,9 +1263,33 @@ anchura
\end_layout
\begin_layout Standard
+\begin_inset Float figure
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\align center
\begin_inset Graphics
filename image.Y3EN9Y.png
- width 100text%
+ width 90text%
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+Memoria ROM.
+\end_layout
+
+\end_inset
+
+
+\end_layout
\end_inset
diff --git a/fli/n6.lyx b/fli/n6.lyx
index f89c446..204b6d1 100644
--- a/fli/n6.lyx
+++ b/fli/n6.lyx
@@ -253,7 +253,7 @@ En relaciones con aridad
dominio
\series default
como
-\begin_inset Formula $\text{Dom}(R)=\{(x_{1},\dots,x_{n-1})|\exists x_{n}:(x_{1},\dots,x_{n})\in R\}$
+\begin_inset Formula $\text{Dom}(R)=\{(x_{1},\dots,x_{n-1})|\exists x_{n}\mid (x_{1},\dots,x_{n})\in R\}$
\end_inset
(si la aridad es
@@ -261,7 +261,7 @@ dominio
\end_inset
, entonces
-\begin_inset Formula $\text{Dom}(R)=\{x|\exists y:xRy\}$
+\begin_inset Formula $\text{Dom}(R)=\{x|\exists y\mid xRy\}$
\end_inset
), y el
@@ -269,7 +269,7 @@ dominio
rango
\series default
como
-\begin_inset Formula $\text{Ran}(R)=\{x_{n}|\exists(x_{1},\dots,x_{n-1}):(x_{1},\dots,x_{n})\in R\}$
+\begin_inset Formula $\text{Ran}(R)=\{x_{n}|\exists(x_{1},\dots,x_{n-1})\mid (x_{1},\dots,x_{n})\in R\}$
\end_inset
(si la aridad es
@@ -277,7 +277,7 @@ rango
\end_inset
, entonces
-\begin_inset Formula $\text{Ran}(R)=\{y|\exists x:xRy\}$
+\begin_inset Formula $\text{Ran}(R)=\{y|\exists x\mid xRy\}$
\end_inset
.
diff --git a/fuvr1/n1.lyx b/fuvr1/n1.lyx
index c26556f..fe23ed5 100644
--- a/fuvr1/n1.lyx
+++ b/fuvr1/n1.lyx
@@ -269,7 +269,7 @@ Pongamos que existe otro
Inverso para el producto:
\series default
-\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a'':a\cdot a''=1$
+\begin_inset Formula $\forall a\in\mathbb{K}\backslash\{0\},\exists!a''\mid a\cdot a''=1$
\end_inset
;
@@ -893,7 +893,7 @@ bicho
\end_inset
-\begin_inset Formula $\bigcap\{I:I\text{ es un conjunto inductivo de }\mathbb{R}\}$
+\begin_inset Formula $\bigcap\{I\mid I\text{ es un conjunto inductivo de }\mathbb{R}\}$
\end_inset
, la intersección de todos los conjuntos inductivos y por tanto el más pequeño
@@ -960,7 +960,7 @@ Para
.
Entonces
-\begin_inset Formula $S=\{n\in\mathbb{N}:1<n<2\}\neq\emptyset\land r\in s$
+\begin_inset Formula $S=\{n\in\mathbb{N}\mid 1<n<2\}\neq\emptyset\land r\in s$
\end_inset
.
@@ -1023,11 +1023,11 @@ Demostrar resto de propiedades cuando las estudiemos, si no como ejercicio.
\begin_layout Standard
Definimos
-\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}:n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$
+\begin_inset Formula $\mathbb{Z}:=\{0\}\cup\{n\in\mathbb{R}\mid n\in\mathbb{N}\text{ o }-n\in\mathbb{N}\}$
\end_inset
y
-\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}:m\in\mathbb{Z},n\in\mathbb{N}\}$
+\begin_inset Formula $\mathbb{Q}:=\{m\cdot n^{-1}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$
\end_inset
.
@@ -1098,7 +1098,7 @@ Dado un número natural
\end_inset
, un conjunto
-\begin_inset Formula $S\subseteq\{n\in\mathbb{N}:n\geq N\}\subseteq\mathbb{N}$
+\begin_inset Formula $S\subseteq\{n\in\mathbb{N}\mid n\geq N\}\subseteq\mathbb{N}$
\end_inset
nos sirve para realizar demostraciones para los naturales a partir de un
@@ -1145,7 +1145,7 @@ Teorema Fundamental de la Aritmética
Demostración:
\series default
Sea
-\begin_inset Formula $A=\{2\leq n\in\mathbb{N}:n\text{ cumple el Teorema Fund. de la Aritmética}\}$
+\begin_inset Formula $A=\{2\leq n\in\mathbb{N}\mid n\text{ cumple el Teorema Fund. de la Aritmética}\}$
\end_inset
.
@@ -1233,7 +1233,7 @@ propiedad arquimediana:
Demostración:
\series default
De no ser así,
-\begin_inset Formula $A:=\{ny:n\in\mathbb{N}\}$
+\begin_inset Formula $A:=\{ny\mid n\in\mathbb{N}\}$
\end_inset
estaría acotado superiormente por
@@ -1405,7 +1405,7 @@ Demostremos que existe.
\end_inset
, se tiene que el conjunto
-\begin_inset Formula $\{n\in\mathbb{N}:n>x\}\neq\emptyset$
+\begin_inset Formula $\{n\in\mathbb{N}\mid n>x\}\neq\emptyset$
\end_inset
, por lo que tiene un primer elemento
@@ -1542,7 +1542,7 @@ raíz cuadrada
Definimos
\begin_inset Formula
\[
-\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}:r^{2}<x\}
+\sqrt{x}:=\sup\{0\leq r\in\mathbb{Q}\mid r^{2}<x\}
\]
\end_inset
@@ -1805,7 +1805,7 @@ Ahora veremos que esto también se cumple con si
\end_layout
\begin_layout Standard
-\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}:r^{2}<2\})$
+\begin_inset Formula $\exists\alpha\in\mathbb{R}\backslash\mathbb{Q}:(\alpha^{2}=2\land\alpha=\sup\{0\leq r\in\mathbb{Q}\mid r^{2}<2\})$
\end_inset
.
@@ -1821,7 +1821,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}:r^{2}<2\}$
+\begin_inset Formula $A=\{0\leq r\in\mathbb{Q}\mid r^{2}<2\}$
\end_inset
.
@@ -1950,7 +1950,7 @@ Sea
.
También podemos probar que
-\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r:r\in\mathbb{Q},r<x\}$
+\begin_inset Formula $\forall x\in\mathbb{R},x=\sup\{r\mid r\in\mathbb{Q},r<x\}$
\end_inset
, pues si
@@ -2235,7 +2235,7 @@ Sea
\end_inset
;
-\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}:r^{p}<x\}$
+\begin_inset Formula $\alpha=\sup\{r\in\mathbb{Q}\mid r^{p}<x\}$
\end_inset
.
@@ -2266,7 +2266,7 @@ raíz
Lo escribimos como
\begin_inset Formula
\[
-x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r:r\in\mathbb{Q},r^{p}<x\}
+x^{\frac{1}{p}}:=\sqrt[p]{x}:=\sup\{r\mid r\in\mathbb{Q},r^{p}<x\}
\]
\end_inset
diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx
index bb73cad..6312a4f 100644
--- a/fuvr1/n2.lyx
+++ b/fuvr1/n2.lyx
@@ -369,7 +369,7 @@ intervalo cerrado
\end_inset
al conjunto
-\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$
+\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$
\end_inset
,
@@ -377,7 +377,7 @@ intervalo cerrado
intervalo abierto
\series default
a
-\begin_inset Formula $(a,b):=\{x\in\mathbb{R}:a<x<b\}$
+\begin_inset Formula $(a,b):=\{x\in\mathbb{R}\mid a<x<b\}$
\end_inset
e
@@ -385,11 +385,11 @@ intervalo abierto
intervalos semiabiertos
\series default
por la derecha e izquierda, respectivamente, a
-\begin_inset Formula $[a,b):=\{x\in\mathbb{R}:a\leq x<b\}$
+\begin_inset Formula $[a,b):=\{x\in\mathbb{R}\mid a\leq x<b\}$
\end_inset
y
-\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}:a<x\leq b\}$
+\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}\mid a<x\leq b\}$
\end_inset
.
@@ -415,7 +415,7 @@ bola cerrada
\end_inset
al conjunto
-\begin_inset Formula $B[x_{0},r]:=\{x\in K:|x-x_{0}|\leq r\}$
+\begin_inset Formula $B[x_{0},r]:=\{x\in K\mid |x-x_{0}|\leq r\}$
\end_inset
, y
@@ -423,7 +423,7 @@ bola cerrada
bola abierta
\series default
a
-\begin_inset Formula $B(x_{0},r):=\{x\in K:|x-x_{0}|<r\}$
+\begin_inset Formula $B(x_{0},r):=\{x\in K\mid |x-x_{0}|<r\}$
\end_inset
.
@@ -504,7 +504,7 @@ Demostración:
\begin_layout Standard
Toda sucesión convergente es acotada, es decir
-\begin_inset Formula $\{a_{n}:n\in\mathbb{N}\}$
+\begin_inset Formula $\{a_{n}\mid n\in\mathbb{N}\}$
\end_inset
es un conjunto acotado.
@@ -1567,11 +1567,11 @@ Demostración:
.
Entonces uno de los conjuntos
-\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[c_{0},m_{0}]\}$
+\begin_inset Formula $\{n\in\mathbb{N}\mid a_{n}\in[c_{0},m_{0}]\}$
\end_inset
o
-\begin_inset Formula $\{n\in\mathbb{N}:a_{n}\in[m_{0},d_{0}]\}$
+\begin_inset Formula $\{n\in\mathbb{N}\mid a_{n}\in[m_{0},d_{0}]\}$
\end_inset
es infinito.
@@ -2744,7 +2744,7 @@ Demostración:
\end_inset
y sea
-\begin_inset Formula $A:=\{z\in\mathbb{R}:a^{z}\leq x\}$
+\begin_inset Formula $A:=\{z\in\mathbb{R}\mid a^{z}\leq x\}$
\end_inset
, que sabemos acotado superiormente.
diff --git a/fuvr1/n3.lyx b/fuvr1/n3.lyx
index 95517f3..e8b4534 100644
--- a/fuvr1/n3.lyx
+++ b/fuvr1/n3.lyx
@@ -1431,7 +1431,7 @@ Existen
\end_inset
Si
-\begin_inset Formula $\alpha:=\sup\{f(x):x\in[a,b]\}$
+\begin_inset Formula $\alpha:=\sup\{f(x)\mid x\in[a,b]\}$
\end_inset
, existe
diff --git a/fuvr2/n1.lyx b/fuvr2/n1.lyx
index a8766da..b840f8f 100644
--- a/fuvr2/n1.lyx
+++ b/fuvr2/n1.lyx
@@ -1141,7 +1141,7 @@ Sea
.
Sea
-\begin_inset Formula $A:=\{z\in(x,y]:f(x)\leq f(z)\}$
+\begin_inset Formula $A:=\{z\in(x,y]\mid f(x)\leq f(z)\}$
\end_inset
, como
diff --git a/fuvr2/n2.lyx b/fuvr2/n2.lyx
index 9d5d103..b0dcf59 100644
--- a/fuvr2/n2.lyx
+++ b/fuvr2/n2.lyx
@@ -263,7 +263,7 @@ de Darboux
), respectivamente, a
\begin_inset Formula
\begin{eqnarray*}
-\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f:=\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}
+\underline{\int_{a}^{b}}f:=\sup\{s(f,\pi)\}_{\pi\in{\cal P}([a,b])} & \text{ y } & \overline{\int_{a}^{b}}f\mid =\inf\{S(f,\pi)\}_{\pi\in{\cal P}([a,b])}
\end{eqnarray*}
\end_inset
diff --git a/fuvr2/n3.lyx b/fuvr2/n3.lyx
index 5d9c1ab..9db6cf2 100644
--- a/fuvr2/n3.lyx
+++ b/fuvr2/n3.lyx
@@ -489,7 +489,7 @@ Vemos que
\begin_layout Standard
El conjunto
-\begin_inset Formula $\{x>0:\cos x=0\}$
+\begin_inset Formula $\{x>0\mid \cos x=0\}$
\end_inset
es no vacío y de hecho tiene un primer elemento, que se denota
diff --git a/fvc/n2.lyx b/fvc/n2.lyx
index b18a007..61c71c9 100644
--- a/fvc/n2.lyx
+++ b/fvc/n2.lyx
@@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat:
\end_inset
y
-\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c:\mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
+\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
\end_inset
, entonces
@@ -1583,7 +1583,7 @@ Sean
\end_inset
y
-\begin_inset Formula $H:=\{z\in\mathbb{C}:d(z,K)\leq\rho\}$
+\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
\end_inset
, con lo que
diff --git a/fvc/n3.lyx b/fvc/n3.lyx
index 58662d2..a2494f8 100644
--- a/fvc/n3.lyx
+++ b/fvc/n3.lyx
@@ -87,7 +87,7 @@ Sean
\end_inset
y
-\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$
+\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
\end_inset
,
@@ -210,7 +210,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $A:=\{z\in\Omega:\forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
+\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$
\end_inset
, pues
@@ -221,7 +221,7 @@ status open
Como
\begin_inset Formula
\[
-A=\bigcap_{k=0}^{\infty}\{z\in\Omega:f^{(k)}(z)=0\},
+A=\bigcap_{k=0}^{\infty}\{z\in\Omega\mid f^{(k)}(z)=0\},
\]
\end_inset
@@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas
\end_inset
no es idénticamente nula, entonces todo punto de
-\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$
+\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$
\end_inset
es aislado y
@@ -377,7 +377,7 @@ cero
orden
\series default
-\begin_inset Formula $\min\{n\in\mathbb{N}:f^{(n)}(a)\neq0\}$
+\begin_inset Formula $\min\{n\in\mathbb{N}\mid f^{(n)}(a)\neq0\}$
\end_inset
.
diff --git a/fvc/n4.lyx b/fvc/n4.lyx
index c7ae304..cfd60f7 100644
--- a/fvc/n4.lyx
+++ b/fvc/n4.lyx
@@ -968,7 +968,7 @@ f'(z) & \text{si }z=w.
\end_inset
es continua en
-\begin_inset Formula $\{(z,w)\in\Omega\times\Omega:z\neq w\}$
+\begin_inset Formula $\{(z,w)\in\Omega\times\Omega\mid z\neq w\}$
\end_inset
.
@@ -1083,7 +1083,7 @@ Ahora bien, fijado
\begin_layout Standard
Sea
-\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1834,7 +1834,7 @@ Sean
\end_inset
, entonces
-\begin_inset Formula $\{a\in S:\text{Ind}_{\Gamma}(a)\neq0\}$
+\begin_inset Formula $\{a\in S\mid \text{Ind}_{\Gamma}(a)\neq0\}$
\end_inset
es finito y
@@ -1854,7 +1854,7 @@ Sean
Demostración:
\series default
Sea
-\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$
+\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$
\end_inset
, que es abierto por ser unión de componentes conexas de
@@ -1886,7 +1886,7 @@ status open
.
Sea
-\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
, que es cerrado por ser complementario de un abierto y acotado porque no
@@ -1896,7 +1896,7 @@ status open
, luego es compacto.
Si
-\begin_inset Formula $S\cap K=\{a\in S:\text{Ind}_{\Gamma}(z)\neq0\}$
+\begin_inset Formula $S\cap K=\{a\in S\mid \text{Ind}_{\Gamma}(z)\neq0\}$
\end_inset
no fuera finito, tendría un punto de acumulación que, por compacidad, debería
diff --git a/fvv1/n1.lyx b/fvv1/n1.lyx
index 41aa455..e3422b2 100644
--- a/fvv1/n1.lyx
+++ b/fvv1/n1.lyx
@@ -163,7 +163,7 @@ Ejemplos de normas en
.
Además,
-\begin_inset Formula $V:={\cal C}[a,b]:=\{f:[a,b]\rightarrow\mathbb{R}\text{ continua}\}$
+\begin_inset Formula $V:={\cal C}[a,b]:=\{f\mid [a,b]\rightarrow\mathbb{R}\text{ continua}\}$
\end_inset
con
@@ -706,7 +706,7 @@ teorema
, que es continua por ser composición de dos funciones continuas (la identidad
es continua por la otra cota y la demostración del teorema anterior), entonces
-\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}:\Vert x\Vert_{1}=1\}$
+\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}\mid \Vert x\Vert_{1}=1\}$
\end_inset
es cerrado dentro del compacto
diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx
index 14dd50a..1b761e2 100644
--- a/fvv1/n2.lyx
+++ b/fvv1/n2.lyx
@@ -897,7 +897,7 @@ to por abiertos de
\end_inset
y
-\begin_inset Formula $\{B_{i}\}_{i=1}^{k}:=\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$
+\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\mid =\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$
\end_inset
un subrecubrimiento finito del que suponemos que no podemos quitar ninguna
diff --git a/fvv1/n3.lyx b/fvv1/n3.lyx
index 776351a..91f5019 100644
--- a/fvv1/n3.lyx
+++ b/fvv1/n3.lyx
@@ -840,7 +840,7 @@ suponiendo
.
Pero
-\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}:\Vert y\Vert=1\}=:K$
+\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}\mid \Vert y\Vert=1\}=:K$
\end_inset
, que es compacto por ser cerrado y acotado, y
diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx
index 07fa28a..f95baae 100644
--- a/fvv1/n4.lyx
+++ b/fvv1/n4.lyx
@@ -104,7 +104,7 @@ implícita
un abierto.
La región
-\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}:f(x_{1},\dots,x_{n})=0\}$
+\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}\mid f(x_{1},\dots,x_{n})=0\}$
\end_inset
está
@@ -459,7 +459,7 @@ Si
\end_inset
está dado en forma implícita como
-\begin_inset Formula $\{x\in{\cal U}:g(x)=0\}$
+\begin_inset Formula $\{x\in{\cal U}\mid g(x)=0\}$
\end_inset
, donde
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx
index 7f67d1f..e7eda47 100644
--- a/fvv2/n1.lyx
+++ b/fvv2/n1.lyx
@@ -208,7 +208,7 @@ gráfica
a
\begin_inset Formula
\[
-\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
+\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
\]
\end_inset
@@ -221,7 +221,7 @@ subgrafo
\begin_inset Formula
\begin{multline*}
\text{subgraf}(f):=\\
-\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
+\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
\end{multline*}
\end_inset
@@ -1452,7 +1452,7 @@ Sea
\end_inset
,
-\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$
+\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$
\end_inset
es cerrado.
@@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables
\end_inset
si y sólo si
-\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$
+\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$
\end_inset
tiene medida nula.
@@ -1559,7 +1559,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$
+\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$
\end_inset
, basta probar que cada
diff --git a/fvv2/n2.lyx b/fvv2/n2.lyx
index 56b1b12..bd555e8 100644
--- a/fvv2/n2.lyx
+++ b/fvv2/n2.lyx
@@ -654,7 +654,7 @@ espacio de medida
\end_inset
-finita si y sólo si
-\begin_inset Formula $\{x\in\Omega:f(x)>0\}$
+\begin_inset Formula $\{x\in\Omega\mid f(x)>0\}$
\end_inset
es numerable.
@@ -889,7 +889,7 @@ medida exterior
como
\begin_inset Formula
\[
-\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k})):B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\}
+\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k}))\mid B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\}
\]
\end_inset
@@ -1146,7 +1146,7 @@ Para
\end_inset
, y por tanto
-\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A):A\supseteq S\text{ abierto}\}$
+\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A)\mid A\supseteq S\text{ abierto}\}$
\end_inset
.
diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx
index a35f67f..11ac40c 100644
--- a/fvv2/n3.lyx
+++ b/fvv2/n3.lyx
@@ -172,7 +172,7 @@ status open
\end_inset
Sea
-\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$
+\begin_inset Formula ${\cal A}:=\{E\in\Sigma'\mid f^{-1}(E)\in\Sigma\}$
\end_inset
, vemos que
@@ -627,7 +627,7 @@ Una función
\end_inset
y la notación
-\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$
+\begin_inset Formula $\{f\bullet a\}\mid =\{\omega\in\Omega\mid f(\omega)\bullet a\}$
\end_inset
.
@@ -1554,7 +1554,7 @@ Sea
\end_inset
y
-\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$
+\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega)\mid h\geq0\}$
\end_inset
, llamamos
@@ -1719,7 +1719,7 @@ Para
medible, se define
\begin_inset Formula
\[
-\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
+\int f\,d\mu:=\sup\left\{ \int s\,d\mu\mid s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
\]
\end_inset
@@ -2236,7 +2236,7 @@ Una función medible
\end_inset
, si y sólo si
-\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$
+\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}\mid \Omega\rightarrow[-\infty,+\infty]$
\end_inset
son integrables, y definimos
@@ -3315,11 +3315,11 @@ Demostración:
\end_inset
es continua, y como
-\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$
+\begin_inset Formula $\delta:=\min\{d(x,K)\mid x\notin A\}>0$
\end_inset
,
-\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$
+\begin_inset Formula $A_{0}:=\{x\mid d(x,K)<\frac{\delta}{2}\}$
\end_inset
es un abierto acotado con
@@ -3328,7 +3328,7 @@ Demostración:
.
Tomando
-\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$
+\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x\mid d(x,K)\geq\frac{\delta}{2}\}$
\end_inset
, podemos definir
diff --git a/fvv2/n4.lyx b/fvv2/n4.lyx
index 6628b45..2db00c5 100644
--- a/fvv2/n4.lyx
+++ b/fvv2/n4.lyx
@@ -360,7 +360,7 @@ teorema
\end_inset
es acotada y
-\begin_inset Formula $D(f):=\{x\in[a,b]:f\text{ es discontinua en }x\}$
+\begin_inset Formula $D(f):=\{x\in[a,b]\mid f\text{ es discontinua en }x\}$
\end_inset
, entonces
diff --git a/fvv3/n.pdf b/fvv3/n.pdf
deleted file mode 100644
index 397a272..0000000
--- a/fvv3/n.pdf
+++ /dev/null
Binary files differ
diff --git a/ga/n1.lyx b/ga/n1.lyx
index 16a9bef..d1b406c 100644
--- a/ga/n1.lyx
+++ b/ga/n1.lyx
@@ -2271,7 +2271,7 @@ Dado un espacio topológico
\end_inset
,
-\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$
+\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$
\end_inset
es un subanillo de
@@ -2287,7 +2287,7 @@ Dado un espacio vectorial
\end_inset
,
-\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$
+\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$
\end_inset
es un subanillo de
@@ -2307,7 +2307,7 @@ Dado un anillo
\end_inset
,
-\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$
+\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$
\end_inset
es un subanillo de
@@ -3944,7 +3944,7 @@ Demostración:
\end_inset
, pues
-\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$
+\begin_inset Formula $\pi^{-1}(J/I)=\{x\mid\pi(x)=[x]\in J/I\}$
\end_inset
, pero si
@@ -4005,7 +4005,7 @@ Ahora vemos que, dado un ideal
\end_inset
,
-\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$
+\begin_inset Formula $\pi^{-1}(X)=\{x\mid[x]\in X\}\ni0$
\end_inset
; para
@@ -4058,7 +4058,7 @@ Ahora vemos que, dado un ideal
.
Además,
-\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$
+\begin_inset Formula $\pi^{-1}(X)/I=\{x\mid[x]\in X\}/I=\{[x]\mid[x]\in X\}=X$
\end_inset
.
@@ -4185,8 +4185,8 @@ La intersección de una familia de ideales de
, definimos los ideales
\begin_inset Formula
\begin{eqnarray*}
-\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
-\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
+\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}\;\middle|\;S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
+\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}\;\middle|\;n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
\end{eqnarray*}
\end_inset
@@ -4257,7 +4257,7 @@ En efecto,
\end_inset
,
-\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
+\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}\mid n,m|k\}=\{k\mid\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
\end_inset
y
diff --git a/ga/n2.lyx b/ga/n2.lyx
index 11e1265..caf4b8a 100644
--- a/ga/n2.lyx
+++ b/ga/n2.lyx
@@ -2668,7 +2668,7 @@ Si
.
Veamos que
-\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x:|N(x)|=1\}$
+\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x\mid |N(x)|=1\}$
\end_inset
.
@@ -3376,7 +3376,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
diff --git a/ga/n3.lyx b/ga/n3.lyx
index bd1768b..d3edbf2 100644
--- a/ga/n3.lyx
+++ b/ga/n3.lyx
@@ -169,11 +169,11 @@ polinomios constantes
\end_inset
,
-\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$
+\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$
\end_inset
e
-\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$
+\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
\end_inset
son ideales de
@@ -197,7 +197,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -1570,7 +1570,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
@@ -3473,7 +3473,7 @@ Definimos
\end_inset
,
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y para
@@ -4641,7 +4641,7 @@ Demostración:
\end_inset
, luego existe
-\begin_inset Formula $i:=\min\{j:p\nmid b_{j}\}$
+\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$
\end_inset
y entonces
diff --git a/ga/n4.lyx b/ga/n4.lyx
index 23c1d2f..accc8be 100644
--- a/ga/n4.lyx
+++ b/ga/n4.lyx
@@ -745,7 +745,7 @@ Si
\end_inset
es una familia de grupos,
-\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$
+\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$
\end_inset
es un subgrupo de
@@ -773,7 +773,7 @@ centralizador
\end_inset
es el subgrupo
-\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$
+\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$
\end_inset
, y el
@@ -785,7 +785,7 @@ centro
\end_inset
es el subgrupo abeliano
-\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
+\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
\end_inset
.
@@ -2973,7 +2973,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$
\end_inset
.
@@ -3014,7 +3014,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$
\end_inset
.
@@ -3050,7 +3050,7 @@ acción por translación a la izquierda
y
\begin_inset Formula
\[
-\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
+\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
\]
\end_inset
@@ -3170,7 +3170,7 @@ normalizador
\end_inset
es
-\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$
+\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$
\end_inset
, el mayor subgrupo de
@@ -3393,12 +3393,12 @@ status open
\begin_layout Plain Layout
Si la acción es por la izquierda,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
\end_inset
.
Si es por la derecha,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$
\end_inset
.
@@ -3606,7 +3606,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$
+\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$
\end_inset
,
diff --git a/ga/n5.lyx b/ga/n5.lyx
index b562086..668a3e2 100644
--- a/ga/n5.lyx
+++ b/ga/n5.lyx
@@ -98,7 +98,7 @@ suma
\end_inset
a
-\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}:b_{i}\in B_{i},\{i\in I:b_{i}\neq0\}\text{ es finito}\}$
+\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$
\end_inset
.
@@ -453,7 +453,7 @@ Para
\end_inset
con
-\begin_inset Formula $\{i\in I:b_{i}\neq0\}$
+\begin_inset Formula $\{i\in I\mid b_{i}\neq0\}$
\end_inset
finito.
@@ -704,7 +704,7 @@ subgrupo de
es
\begin_inset Formula
\[
-t_{p}(A):=\{a\in A:\exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A:|a|\text{ es potencia de }p\}.
+t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}\mid p^{n}a=0\}=\{a\in A\mid |a|\text{ es potencia de }p\}.
\]
\end_inset
diff --git a/ga/n6.lyx b/ga/n6.lyx
index f59c930..6641cef 100644
--- a/ga/n6.lyx
+++ b/ga/n6.lyx
@@ -168,7 +168,7 @@ mueve
\series default
en caso contrario.
Llamamos
-\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}:\sigma(i)\neq i\}$
+\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}\mid \sigma(i)\neq i\}$
\end_inset
, y es claro que
diff --git a/gae/n2.lyx b/gae/n2.lyx
index 955f8af..79c5de1 100644
--- a/gae/n2.lyx
+++ b/gae/n2.lyx
@@ -718,7 +718,7 @@ punto fijo
, y definimos
\begin_inset Formula
\[
-\text{Fix}(f):=\{Q\in{\cal E}:f(Q)=Q\}
+\text{Fix}(f):=\{Q\in{\cal E}\mid f(Q)=Q\}
\]
\end_inset
@@ -755,7 +755,7 @@ vectores invariantes
o asociado al autovalor 1,
\begin_inset Formula
\[
-\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V:\phi(\vec{v})=\vec{v}\}
+\text{Inv}(\phi):=\text{Nuc}(\phi-id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=\vec{v}\}
\]
\end_inset
@@ -771,7 +771,7 @@ opuestos
,
\begin_inset Formula
\[
-\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V:\phi(\vec{v})=-\vec{v}\}
+\text{Opp}(\phi):=\text{Nuc}(\phi+id_{V})=\{\vec{v}\in V\mid \phi(\vec{v})=-\vec{v}\}
\]
\end_inset
diff --git a/gcs/n1.lyx b/gcs/n1.lyx
index 6e1fd95..75dd0c2 100644
--- a/gcs/n1.lyx
+++ b/gcs/n1.lyx
@@ -1647,11 +1647,11 @@ distancia orientada
\end_inset
en dos semiplanos
-\begin_inset Formula $H^{+}:=\{p:\text{dist}(p,\ell)\geq0\}$
+\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$
\end_inset
y
-\begin_inset Formula $H^{-}:=\{p:\text{dist}(p,\ell)\leq0\}$
+\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$
\end_inset
, de modo que
diff --git a/gcs/n2.lyx b/gcs/n2.lyx
index 61adb12..b768ad2 100644
--- a/gcs/n2.lyx
+++ b/gcs/n2.lyx
@@ -2984,7 +2984,7 @@ Sean
\end_inset
y
-\begin_inset Formula $J:=\{t\in I:\alpha(t)\in V\}$
+\begin_inset Formula $J:=\{t\in I\mid \alpha(t)\in V\}$
\end_inset
, entonces
@@ -4304,7 +4304,7 @@ Sean
\end_inset
y
-\begin_inset Formula $A:=\{p\in S:f(p)=a\}\neq\emptyset$
+\begin_inset Formula $A:=\{p\in S\mid f(p)=a\}\neq\emptyset$
\end_inset
, pues
@@ -4698,7 +4698,7 @@ Dados
\end_inset
, el cilindro
-\begin_inset Formula $C:=\{(x,y,z):x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $C:=\{(x,y,z)\mid x^{2}+y^{2}=r^{2}\}$
\end_inset
y la parametrización
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
index 5bae145..4cdb4d4 100644
--- a/gcs/n3.lyx
+++ b/gcs/n3.lyx
@@ -472,7 +472,7 @@ Sea
\end_inset
es la superficie de nivel
-\begin_inset Formula $\{p:f(p)=r^{2}\}$
+\begin_inset Formula $\{p\mid f(p)=r^{2}\}$
\end_inset
, luego admite la orientación
@@ -1018,7 +1018,7 @@ Los cilindros se obtienen por un movimiento de
\end_inset
,
-\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0):x^{2}+y^{2}=r^{2}\}=\{(x,y,0):x^{2}+y^{2}=1\}$
+\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0)\mid x^{2}+y^{2}=r^{2}\}=\{(x,y,0)\mid x^{2}+y^{2}=1\}$
\end_inset
.
@@ -2275,7 +2275,7 @@ El cilindro
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v):=(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
\end_inset
,
@@ -2635,7 +2635,7 @@ status open
\begin_layout Plain Layout
La superficie es el grafo
-\begin_inset Formula $S:=\{X(u,v):=(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
\end_inset
, de modo que
diff --git a/ggs/n2.lyx b/ggs/n2.lyx
index f18290a..09e8555 100644
--- a/ggs/n2.lyx
+++ b/ggs/n2.lyx
@@ -569,7 +569,7 @@ intervalo maximal de existencia
Demostración:
\series default
Sea
-\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
+\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
\end_inset
.
@@ -669,7 +669,7 @@ Sean ahora
es abierto y, por el teorema del peine, también conexo, luego es un intervalo.
Sea
-\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
+\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
\end_inset
, y queremos ver que
@@ -1401,7 +1401,7 @@ geodésicamente completa
\begin_layout Enumerate
Dado el plano
-\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$
+\begin_inset Formula $S=\{p\in\mathbb{R}^{3}\mid \langle p,a\rangle=c\}$
\end_inset
, la geodésica maximal de
@@ -1579,7 +1579,7 @@ Sean
\end_inset
,
-\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$
\end_inset
un cilindro,
diff --git a/ggs/n3.lyx b/ggs/n3.lyx
index 4bad339..f553749 100644
--- a/ggs/n3.lyx
+++ b/ggs/n3.lyx
@@ -110,7 +110,7 @@ aplicación exponencial
\end_inset
donde
-\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$
+\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$
\end_inset
.
@@ -909,7 +909,7 @@ Sean
\end_inset
tal que
-\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -933,7 +933,7 @@ disco geodésico
\end_inset
cumple que
-\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$
+\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$
\end_inset
, llamamos
@@ -1099,7 +1099,7 @@ Sean
\end_inset
, luego
-\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$
+\begin_inset Formula $t_{0}=\max\{t\in[a,b]\mid \alpha(t)=p_{0}\}<b$
\end_inset
(pues
@@ -1422,7 +1422,7 @@ Finalmente, sea
es
\begin_inset Formula
\[
-A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
+A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
\]
\end_inset
diff --git a/ggs/n4.lyx b/ggs/n4.lyx
index a8a29a2..f6e22f9 100644
--- a/ggs/n4.lyx
+++ b/ggs/n4.lyx
@@ -258,7 +258,7 @@ Demostración:
\begin_layout Standard
Primero vemos que
-\begin_inset Formula $A:=\{q\in S:\Omega(p,q)\neq\emptyset\}=S$
+\begin_inset Formula $A:=\{q\in S\mid \Omega(p,q)\neq\emptyset\}=S$
\end_inset
viendo que es abierto, cerrado y no vacío.
@@ -750,7 +750,7 @@ Queremos ver que
\end_inset
, existe
-\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]:\alpha(t)\notin D(p,r^{*})\}$
+\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]\mid \alpha(t)\notin D(p,r^{*})\}$
\end_inset
, pero
diff --git a/ggs/n5.lyx b/ggs/n5.lyx
index f56b96a..00374b2 100644
--- a/ggs/n5.lyx
+++ b/ggs/n5.lyx
@@ -229,7 +229,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $A:=\{t\in[0,1]:\tilde{\alpha}(t)=tw\}$
+\begin_inset Formula $A:=\{t\in[0,1]\mid \tilde{\alpha}(t)=tw\}$
\end_inset
, queremos ver que
diff --git a/ggs/n7.lyx b/ggs/n7.lyx
index 0ecec27..142e739 100644
--- a/ggs/n7.lyx
+++ b/ggs/n7.lyx
@@ -273,7 +273,7 @@ soporte
\end_inset
es
-\begin_inset Formula $\text{sop}f:=\overline{\{x\in D:f(x)\neq0\}}$
+\begin_inset Formula $\text{sop}f:=\overline{\{x\in D\mid f(x)\neq0\}}$
\end_inset
.
diff --git a/graf/n1.lyx b/graf/n1.lyx
index c547ff0..921c7d8 100644
--- a/graf/n1.lyx
+++ b/graf/n1.lyx
@@ -119,7 +119,7 @@ grafo no dirigido
\end_inset
definido de forma similar, pero
-\begin_inset Formula $E\subseteq\{S\in{\cal P}(V):|S|\in\{1,2\}\}$
+\begin_inset Formula $E\subseteq\{S\in{\cal P}(V)\mid |S|\in\{1,2\}\}$
\end_inset
es un conjunto de
@@ -136,7 +136,7 @@ ejes
\end_inset
a uno dirigido
-\begin_inset Formula $(V,\{(i,j)\in V\times V:i,j\in E\})$
+\begin_inset Formula $(V,\{(i,j)\in V\times V\mid i,j\in E\})$
\end_inset
.
@@ -340,7 +340,7 @@ grafo complementario
es
\begin_inset Formula
\[
-G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V):|S|=2,S\notin E\}).
+G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}).
\]
\end_inset
@@ -408,7 +408,7 @@ inducido
\end_inset
, donde
-\begin_inset Formula $E_{V'}:=\{S\in E:S\subseteq V'\}$
+\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$
\end_inset
, y
@@ -680,7 +680,7 @@ teorema
pues
\begin_inset Formula
\[
-\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E:v\in S\}|=\sum_{S\in E}|S|=2|E|.
+\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E\mid v\in S\}|=\sum_{S\in E}|S|=2|E|.
\]
\end_inset
diff --git a/graf/n2.lyx b/graf/n2.lyx
index eb5661f..9d905d7 100644
--- a/graf/n2.lyx
+++ b/graf/n2.lyx
@@ -2145,7 +2145,7 @@ grafo en línea
\end_inset
y
-\begin_inset Formula $E^{L}:=\{(e,f):e\neq f,e\cap f\neq\emptyset\}$
+\begin_inset Formula $E^{L}:=\{(e,f)\mid e\neq f,e\cap f\neq\emptyset\}$
\end_inset
.
diff --git a/graf/n4.lyx b/graf/n4.lyx
index 6674531..5334582 100644
--- a/graf/n4.lyx
+++ b/graf/n4.lyx
@@ -1782,11 +1782,11 @@ Si
.
Sean ahora
-\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}:(u_{i},v)\in E_{k}\}$
+\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$
\end_inset
e
-\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}:(u_{i+1},u)\in E_{k}\}$
+\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$
\end_inset
, se tiene
diff --git a/graf/n6.lyx b/graf/n6.lyx
index e296d0b..6bf574a 100644
--- a/graf/n6.lyx
+++ b/graf/n6.lyx
@@ -222,11 +222,11 @@ teorema
\end_inset
,
-\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}:Ax+Gy\leq b\}$
+\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$
\end_inset
y
-\begin_inset Formula $S:=\{[x,y]\in P:x\in\mathbb{Z}^{p}\}$
+\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$
\end_inset
, existen
@@ -242,7 +242,7 @@ teorema
\end_inset
tales que
-\begin_inset Formula $\text{ec}S=\{[x,y]:A'x+G'y\leq b'\}$
+\begin_inset Formula $\text{ec}S=\{[x,y]\mid A'x+G'y\leq b'\}$
\end_inset
.
@@ -253,11 +253,11 @@ teorema
Demostración:
\series default
Sean
-\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}:y\leq\sqrt{2}x,x\geq0,y\geq0\}$
+\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$
\end_inset
y
-\begin_inset Formula $C:=\{(x,y):y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
+\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
\end_inset
.
@@ -406,7 +406,7 @@ Sean
\end_inset
y
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:Ax\leq b\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$
\end_inset
, si
@@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:
\end_inset
,
-\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}:Ax=b,x\geq0\}$
+\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$
\end_inset
es entero.
@@ -913,7 +913,7 @@ Teorema de Hoffman-Kruskal:
\end_inset
, el poliedro
-\begin_inset Formula $\{x\in\mathbb{R}^{n}:Ax\leq b,x\geq0\}$
+\begin_inset Formula $\{x\in\mathbb{R}^{n}\mid Ax\leq b,x\geq0\}$
\end_inset
es entero.
@@ -978,7 +978,7 @@ Dada una submatriz
\end_inset
es unimodular, con lo que
-\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}:Ax+Iy=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$
\end_inset
es entero.
@@ -1003,7 +1003,7 @@ Dada una submatriz
\end_inset
es
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
\end_inset
.
@@ -1069,11 +1069,11 @@ Sean
\end_inset
,
-\begin_inset Formula $P:=\{x:Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$
\end_inset
,
-\begin_inset Formula $Q:=\{[x,y]:Ax+y=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$
\end_inset
y
@@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la
\begin_layout Standard
Para el problema del viajante de comercio sobre una red completa
-\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E:=\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
+\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
\end_inset
, existen varias formulaciones:
@@ -1783,7 +1783,7 @@ es
& \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\
& & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 & & \forall i\\
& & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 & & \forall i\\
- & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\
+ & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\
& & x_{ij} & \in\{0,1\} & & \forall i,j\\
& & u_{i} & \in\mathbb{R}^{>0} & & \forall i
\end{alignat*}
diff --git a/graf/n7.lyx b/graf/n7.lyx
index 04fd675..dc0abb4 100644
--- a/graf/n7.lyx
+++ b/graf/n7.lyx
@@ -850,7 +850,7 @@ regla de Bland:
\end_inset
,
-\begin_inset Formula $F:=\{x:Ax=b,x\geq0\}$
+\begin_inset Formula $F:=\{x\mid Ax=b,x\geq0\}$
\end_inset
y
@@ -888,7 +888,7 @@ Si [...]
\end_inset
es la matriz formada por las columnas añadidas, escribimos
-\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
+\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
\end_inset
y vemos que
@@ -921,7 +921,7 @@ vector de variables artificiales
Método de las dos fases:
\series default
] La primera fase consiste en hallar
-\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
+\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
\end_inset
.
diff --git a/iso/n2.lyx b/iso/n2.lyx
index 4a252fc..724794d 100644
--- a/iso/n2.lyx
+++ b/iso/n2.lyx
@@ -188,6 +188,13 @@ TerminateProcess
en Windows.
\end_layout
+\begin_layout Standard
+\begin_inset Newpage pagebreak
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Estados
\end_layout
@@ -359,7 +366,32 @@ Bloqueado
\begin_inset Quotes frd
\end_inset
-, si el proces, ueado suspendido
+, si el proceso hace una llamada al sistema que no se puede responder inmediatam
+ente.
+\end_layout
+
+\begin_layout Itemize
+De
+\begin_inset Quotes cld
+\end_inset
+
+Bloqueado
+\begin_inset Quotes crd
+\end_inset
+
+ a
+\begin_inset Quotes cld
+\end_inset
+
+Listo
+\begin_inset Quotes crd
+\end_inset
+
+ o de
+\begin_inset Quotes cld
+\end_inset
+
+Bloqueado suspendido
\begin_inset Quotes frd
\end_inset
@@ -435,6 +467,18 @@ Implementación
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
El SO mantiene una
\series bold
tabla de procesos
@@ -464,6 +508,22 @@ administración de procesos
usado de CPU.
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Itemize
Para
\series bold
@@ -882,6 +942,22 @@ Diagrama de Gantt.
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Algoritmos no apropiativos:
\end_layout
@@ -972,6 +1048,22 @@ maduración
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Algoritmos apropiativos:
\end_layout
diff --git a/mc/n1.lyx b/mc/n1.lyx
index 83907a6..a82eb74 100644
--- a/mc/n1.lyx
+++ b/mc/n1.lyx
@@ -489,7 +489,7 @@ Sean
\end_inset
y
-\begin_inset Formula $F'\coloneqq\{r\in Q':r\cap F\neq\emptyset\}$
+\begin_inset Formula $F'\coloneqq\{r\in Q'\mid r\cap F\neq\emptyset\}$
\end_inset
.
@@ -1807,7 +1807,7 @@ Sean
\[
\delta'(q,r)\coloneqq\begin{cases}
\epsilon, & (q,r)=(q_{0},q_{1})\lor(q\in F\land r=q_{\text{F}});\\
-a_{1}\mid\dots\mid a_{k}, & \{a\in\Sigma:r\in\delta(q,a)\}=\{a_{1},\dots,a_{k}\}\neq\emptyset;\\
+a_{1}\mid\dots\mid a_{k}, & \{a\in\Sigma\mid r\in\delta(q,a)\}=\{a_{1},\dots,a_{k}\}\neq\emptyset;\\
\emptyset, & \text{en otro caso}.
\end{cases}
\]
diff --git a/mc/n2.lyx b/mc/n2.lyx
index 758fd91..b7cae20 100644
--- a/mc/n2.lyx
+++ b/mc/n2.lyx
@@ -602,7 +602,7 @@ variable inicial
\end_inset
, donde
-\begin_inset Formula $\{w_{1},\dots,w_{n}\}=\{w:(T,w)\in V\}$
+\begin_inset Formula $\{w_{1},\dots,w_{n}\}=\{w\mid (T,w)\in V\}$
\end_inset
.
@@ -668,7 +668,7 @@ lenguaje generado
\end_inset
es
-\begin_inset Formula $L(G)\coloneqq\{w\in\Sigma^{*}:S\Rightarrow^{*}w\}$
+\begin_inset Formula $L(G)\coloneqq\{w\in\Sigma^{*}\mid S\Rightarrow^{*}w\}$
\end_inset
.
diff --git a/mc/n4.lyx b/mc/n4.lyx
index 3ed5f9d..a4fb314 100644
--- a/mc/n4.lyx
+++ b/mc/n4.lyx
@@ -439,7 +439,7 @@ input
\end_inset
que reconoce
-\begin_inset Formula $K\coloneqq\{\langle{\cal A},w\rangle:\text{la MT \ensuremath{{\cal A}} acepta \ensuremath{w}}\}$
+\begin_inset Formula $K\coloneqq\{\langle{\cal A},w\rangle\mid \text{la MT \ensuremath{{\cal A}} acepta \ensuremath{w}}\}$
\end_inset
.
@@ -1953,7 +1953,7 @@ Algunos lenguajes decidibles:
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{Acc}^{\text{DFA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el DFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
+\begin_inset Formula $\text{Acc}^{\text{DFA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el DFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
\end_inset
.
@@ -2044,7 +2044,7 @@ fun m q0 finals w -> contains (==) (sim m w q0) finals
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Acc}^{\text{NFA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el NFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
+\begin_inset Formula $\text{Acc}^{\text{NFA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el NFA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
\end_inset
.
@@ -2275,7 +2275,7 @@ fun (states, syms, m, r0, finals) ->
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{Acc}^{\text{PDA}}\coloneqq\{\langle{\cal A},w\rangle:\text{el PDA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
+\begin_inset Formula $\text{Acc}^{\text{PDA}}\coloneqq\{\langle{\cal A},w\rangle\mid \text{el PDA \ensuremath{{\cal A}} acepta la cadena \ensuremath{w}}\}$
\end_inset
.
@@ -2322,7 +2322,7 @@ forma normal de Chomsky
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{Empty}^{\text{DFA}}\coloneqq\{\langle{\cal A}\rangle:\text{el DFA }{\cal A}\text{ no acepta ninguna cadena}\}$
+\begin_inset Formula $\text{Empty}^{\text{DFA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el DFA }{\cal A}\text{ no acepta ninguna cadena}\}$
\end_inset
.
@@ -2433,7 +2433,7 @@ fun (trans, q0, finals) -> anystring trans finals nil (cons q0 nil)
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Empty}^{\text{NFA}}\coloneqq\{\langle{\cal A}\rangle:\text{el NFA }{\cal A}\text{ no acepta ninguna cadena}\}$
+\begin_inset Formula $\text{Empty}^{\text{NFA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el NFA }{\cal A}\text{ no acepta ninguna cadena}\}$
\end_inset
.
@@ -2446,7 +2446,7 @@ Análogo.
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Empty}^{\text{PDA}}\coloneqq\{\langle{\cal A}\rangle:\text{el PDA }{\cal A}\text{ no acepta ninguna cadena}\}$
+\begin_inset Formula $\text{Empty}^{\text{PDA}}\coloneqq\{\langle{\cal A}\rangle\mid \text{el PDA }{\cal A}\text{ no acepta ninguna cadena}\}$
\end_inset
.
@@ -2610,7 +2610,7 @@ Demostración:
\end_inset
, sea
-\begin_inset Formula $B\coloneqq\{x\in A:x\notin f(x)\}$
+\begin_inset Formula $B\coloneqq\{x\in A\mid x\notin f(x)\}$
\end_inset
, existe
@@ -2767,7 +2767,7 @@ status open
\begin_layout Standard
\begin_inset Formula
\[
-K\coloneqq\{\langle{\cal M},w\rangle:\text{la MT }{\cal M}\text{ acepta con entrada }w\}\in{\cal RE}\setminus{\cal DEC}.
+K\coloneqq\{\langle{\cal M},w\rangle\mid \text{la MT }{\cal M}\text{ acepta con entrada }w\}\in{\cal RE}\setminus{\cal DEC}.
\]
\end_inset
@@ -2806,7 +2806,7 @@ Demostración:
\end_inset
que decide
-\begin_inset Formula $\{\langle{\cal M}\rangle:{\cal H}\text{ rechaza }\langle{\cal M},\langle{\cal M}\rangle\rangle\}$
+\begin_inset Formula $\{\langle{\cal M}\rangle\mid {\cal H}\text{ rechaza }\langle{\cal M},\langle{\cal M}\rangle\rangle\}$
\end_inset
, pero entonces
diff --git a/mc/n5.lyx b/mc/n5.lyx
index a32f40d..03d0675 100644
--- a/mc/n5.lyx
+++ b/mc/n5.lyx
@@ -327,7 +327,7 @@ Problema de la parada.
\begin_inset Formula
\[
-\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle:{\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}.
+\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle\mid {\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}.
\]
\end_inset
@@ -380,7 +380,7 @@ mapping
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$
+\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle\mid {\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$
\end_inset
.
@@ -454,7 +454,7 @@ mapping
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle:{\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$
+\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle\mid {\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$
\end_inset
.
@@ -674,7 +674,7 @@ Teorema de Rice:
no trivial,
\begin_inset Formula
\[
-{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}.
+{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle\mid {\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}.
\]
\end_inset
diff --git a/mc/n7.lyx b/mc/n7.lyx
index d5dc724..2c77bac 100644
--- a/mc/n7.lyx
+++ b/mc/n7.lyx
@@ -1113,7 +1113,7 @@ Están en
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{RELPRIM}\coloneqq\{\langle x,y\rangle:x,y\in\mathbb{N}\text{ son primos relativos}\}$
+\begin_inset Formula $\text{RELPRIM}\coloneqq\{\langle x,y\rangle\mid x,y\in\mathbb{N}\text{ son primos relativos}\}$
\end_inset
.
@@ -1192,7 +1192,7 @@ noprefix "false"
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{PATH}\coloneqq\{\langle G,s,t\rangle:G\text{ es un grafo dirigido con un camino de }s\text{ a }t\}$
+\begin_inset Formula $\text{PATH}\coloneqq\{\langle G,s,t\rangle\mid G\text{ es un grafo dirigido con un camino de }s\text{ a }t\}$
\end_inset
.
@@ -1251,7 +1251,7 @@ Se añade el nodo
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{4-CLIQUE}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido con una 4-clique}\}$
+\begin_inset Formula $\text{4-CLIQUE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido con una 4-clique}\}$
\end_inset
.
@@ -1287,7 +1287,7 @@ Si
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{EULCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo dirigido con un ciclo euleriano}\}$
+\begin_inset Formula $\text{EULCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo dirigido con un ciclo euleriano}\}$
\end_inset
.
@@ -1317,7 +1317,7 @@ Un teorema de Euler dice que un grafo dirigido
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{2-COLOR}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido bipartito}\}$
+\begin_inset Formula $\text{2-COLOR}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido bipartito}\}$
\end_inset
.
@@ -1562,7 +1562,7 @@ verificador
\end_inset
tal que
-\begin_inset Formula $L=\{w:\exists c:V\text{ acepta }\langle w,c\rangle\}$
+\begin_inset Formula $L=\{w\mid \exists c\mid V\text{ acepta }\langle w,c\rangle\}$
\end_inset
.
diff --git a/mc/n8.lyx b/mc/n8.lyx
index 97f0b4f..8f2b855 100644
--- a/mc/n8.lyx
+++ b/mc/n8.lyx
@@ -408,7 +408,7 @@ satisfacible
Definimos
\begin_inset Formula
\[
-\text{SAT}\coloneqq\text{SAT}_{0}\coloneqq\text{SAT}_{\text{LP}}\coloneqq\{\langle\Phi\rangle:\Phi\text{ es una fórmula booleana satisfacible}\}.
+\text{SAT}\coloneqq\text{SAT}_{0}\coloneqq\text{SAT}_{\text{LP}}\coloneqq\{\langle\Phi\rangle\mid \Phi\text{ es una fórmula booleana satisfacible}\}.
\]
\end_inset
@@ -1039,7 +1039,7 @@ Son
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\text{CLIQUE}\coloneqq\{\langle G,k\rangle:G\text{ es grafo no dirigido con }k\text{-clique}\}$
+\begin_inset Formula $\text{CLIQUE}\coloneqq\{\langle G,k\rangle\mid G\text{ es grafo no dirigido con }k\text{-clique}\}$
\end_inset
.
@@ -1209,7 +1209,7 @@ La función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{HAMPATH}\coloneqq\{\langle G,s,t\rangle:G\text{ es un grafo dirigido con camino hamiltoniano de }s\text{ a }t\}$
+\begin_inset Formula $\text{HAMPATH}\coloneqq\{\langle G,s,t\rangle\mid G\text{ es un grafo dirigido con camino hamiltoniano de }s\text{ a }t\}$
\end_inset
.
@@ -1607,7 +1607,7 @@ La función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{HAMCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo dirigido con un ciclo hamiltoniano}\}$
+\begin_inset Formula $\text{HAMCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo dirigido con un ciclo hamiltoniano}\}$
\end_inset
.
@@ -1765,7 +1765,7 @@ La función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{UHAMCYCLE}\coloneqq\{\langle G\rangle:G\text{ es un grafo no dirigido con un ciclo hamiltoniano}\}$
+\begin_inset Formula $\text{UHAMCYCLE}\coloneqq\{\langle G\rangle\mid G\text{ es un grafo no dirigido con un ciclo hamiltoniano}\}$
\end_inset
.
@@ -2011,7 +2011,7 @@ Claramente la función de conversión de
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{COLOR}\coloneqq\{\langle G,k\rangle:G\text{ es un grafo no dirigido }k\text{-coloreable}\}$
+\begin_inset Formula $\text{COLOR}\coloneqq\{\langle G,k\rangle\mid G\text{ es un grafo no dirigido }k\text{-coloreable}\}$
\end_inset
.
@@ -2277,7 +2277,7 @@ Un ciclo hamiltoniano en
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{SUBSET-SUM}\coloneqq\{\langle S,t\rangle:S\text{ es una lista de naturales con una subsecuencia que suma }t\}.$
+\begin_inset Formula $\text{SUBSET-SUM}\coloneqq\{\langle S,t\rangle\mid S\text{ es una lista de naturales con una subsecuencia que suma }t\}.$
\end_inset
@@ -2605,7 +2605,7 @@ ión, pero calcular las potencias de 10 corresponde a multiplicar por 10
\end_deeper
\begin_layout Enumerate
-\begin_inset Formula $\text{VERTEX-COVER}\coloneqq\{\langle G,k\rangle:G\text{ es un grafo no dirigido con una }k\text{-cobertura}\}$
+\begin_inset Formula $\text{VERTEX-COVER}\coloneqq\{\langle G,k\rangle\mid G\text{ es un grafo no dirigido con una }k\text{-cobertura}\}$
\end_inset
.
diff --git a/mne/n2.lyx b/mne/n2.lyx
index d50ba1f..44b1b3a 100644
--- a/mne/n2.lyx
+++ b/mne/n2.lyx
@@ -241,7 +241,7 @@ con
para dicho problema con redondeo, dado por
\begin_inset Formula
\[
-\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\
+\left\{ \begin{aligned}\omega_{0} & \mid =x_{0}+\delta_{0},\\
\omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1},
\end{aligned}
\right.
diff --git a/mne/n5.lyx b/mne/n5.lyx
index 98aa9a9..79f6ad9 100644
--- a/mne/n5.lyx
+++ b/mne/n5.lyx
@@ -240,7 +240,7 @@ región de estabilidad absoluta
\end_inset
,
-\begin_inset Formula $R=\{z\in\mathbb{C}:|Q(z)|<1\}$
+\begin_inset Formula $R=\{z\in\mathbb{C}\mid |Q(z)|<1\}$
\end_inset
, y para uno multipaso que converge cuando cada
@@ -248,7 +248,7 @@ región de estabilidad absoluta
\end_inset
, es
-\begin_inset Formula $R=\{z\in\mathbb{C}:|\beta_{i}|<1,\forall i\}$
+\begin_inset Formula $R=\{z\in\mathbb{C}\mid |\beta_{i}|<1,\forall i\}$
\end_inset
.
@@ -272,7 +272,7 @@ Hay que tener en cuenta la región de estabilidad antes de considerar un
A-estable
\series default
si
-\begin_inset Formula $\{z\in\mathbb{C}:\text{Re}z<0\}\subseteq R$
+\begin_inset Formula $\{z\in\mathbb{C}\mid \text{Re}z<0\}\subseteq R$
\end_inset
.
diff --git a/pcd/n.pdf b/pcd/n.pdf
deleted file mode 100644
index 1b7678e..0000000
--- a/pcd/n.pdf
+++ /dev/null
Binary files differ
diff --git a/pds/n3.lyx b/pds/n3.lyx
index a50d72d..fa5aed6 100644
--- a/pds/n3.lyx
+++ b/pds/n3.lyx
@@ -421,7 +421,7 @@ Dada una asociación
\end_inset
es el conjunto de posibles valores de
-\begin_inset Formula $|\{a_{i}\in C_{i}:(a_{1},\dots,a_{n})\in R\}|$
+\begin_inset Formula $|\{a_{i}\in C_{i}\mid (a_{1},\dots,a_{n})\in R\}|$
\end_inset
para cada
diff --git a/rc/n.pdf b/rc/n.pdf
deleted file mode 100644
index e01c446..0000000
--- a/rc/n.pdf
+++ /dev/null
Binary files differ
diff --git a/si/n2.lyx b/si/n2.lyx
index 8971dd3..946c8e4 100644
--- a/si/n2.lyx
+++ b/si/n2.lyx
@@ -269,7 +269,7 @@ Y-O
\end_inset
, sea
-\begin_inset Formula $N:=\{S\subseteq V:(u,S)\in A\}$
+\begin_inset Formula $N:=\{S\subseteq V\mid (u,S)\in A\}$
\end_inset
,
@@ -315,7 +315,7 @@ primitiva
árbol Y/O
\series default
es un grafo Y/O para el que el grafo no dirigido
-\begin_inset Formula $(V,\{(u,v)\in V\times V:\exists(u,S)\in A:v\in S\})$
+\begin_inset Formula $(V,\{(u,v)\in V\times V\mid \exists(u,S)\in A\mid v\in S\})$
\end_inset
es acíclico.
diff --git a/si/n3.lyx b/si/n3.lyx
index 91b18ae..ba20d3d 100644
--- a/si/n3.lyx
+++ b/si/n3.lyx
@@ -145,7 +145,7 @@ Podemos representar un problema de búsqueda en un espacio de estados como
\end_inset
,
-\begin_inset Formula $\{w\in V:(v,w)\in A\}$
+\begin_inset Formula $\{w\in V\mid (v,w)\in A\}$
\end_inset
es finito y recursivamente enumerable a partir de
@@ -1224,7 +1224,7 @@ Podemos representar un problema de reducción como una tupla
\end_inset
contable y tanto
-\begin_inset Formula $\{S\subseteq V:(u,S)\in V\}$
+\begin_inset Formula $\{S\subseteq V\mid (u,S)\in V\}$
\end_inset
como cada uno de sus elementos finito y recursivamente enumerable a partir
diff --git a/si/n5.lyx b/si/n5.lyx
index a449826..71f6843 100644
--- a/si/n5.lyx
+++ b/si/n5.lyx
@@ -685,7 +685,7 @@ En lógica de predicados, a todo predicado
\end_inset
le corresponde un conjunto
-\begin_inset Formula $\{x\in U:P(x)\}$
+\begin_inset Formula $\{x\in U\mid P(x)\}$
\end_inset
y una
diff --git a/si/n7.lyx b/si/n7.lyx
index f8678f6..b20a18e 100644
--- a/si/n7.lyx
+++ b/si/n7.lyx
@@ -449,7 +449,7 @@ soporte
\end_inset
es
-\begin_inset Formula $s(Z):=\frac{|\{e\in D:Z\subseteq e\}|}{|D|}$
+\begin_inset Formula $s(Z):=\frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$
\end_inset
; la
@@ -490,7 +490,7 @@ cobertura
.
Las diapositivas usan la notación de mierda
-\begin_inset Formula $|X|:=|\{e\in D:X\subseteq e\}|$
+\begin_inset Formula $|X|:=|\{e\in D\mid X\subseteq e\}|$
\end_inset
.
diff --git a/tem/n1.lyx b/tem/n1.lyx
index 63ebf66..39659d7 100644
--- a/tem/n1.lyx
+++ b/tem/n1.lyx
@@ -406,7 +406,7 @@ La
topología cofinita
\series default
:
-\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$
+\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X\mid X\backslash A\text{ es finito}\}$
\end_inset
.
@@ -1381,7 +1381,7 @@ círculo
\end_inset
es el conjunto
-\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$
+\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$
\end_inset
.
@@ -1402,7 +1402,7 @@ bola abierta
\end_inset
es el conjunto
-\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)<r\}$
+\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$
\end_inset
, y la
@@ -1422,7 +1422,7 @@ bola cerrada
\end_inset
es el conjunto
-\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X:d(p,x)\leq r\}$
+\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$
\end_inset
.
diff --git a/tem/n2.lyx b/tem/n2.lyx
index 02c4d59..912a7be 100644
--- a/tem/n2.lyx
+++ b/tem/n2.lyx
@@ -110,7 +110,7 @@ adherencia
denota
\begin_inset Formula
\[
-\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\}
+\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}\mid S\subseteq C\}
\]
\end_inset
@@ -709,7 +709,7 @@ interior
, y se denota
\begin_inset Formula
\[
-\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\}
+\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}\mid A\subseteq S\}
\]
\end_inset
@@ -1160,7 +1160,7 @@ Sea
\end_inset
, entonces
-\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
+\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
\end_inset
.
@@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
+\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
\end_inset
, y
@@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$
+\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$
\end_inset
.
diff --git a/tem/n3.lyx b/tem/n3.lyx
index 245e95c..35cc0dc 100644
--- a/tem/n3.lyx
+++ b/tem/n3.lyx
@@ -245,7 +245,7 @@ De aquí que
Demostración:
\series default
Tomando
-\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$
+\begin_inset Formula ${\cal B}(p)=\{B(p;\delta)\mid \delta>0\}$
\end_inset
y
diff --git a/tem/n4.lyx b/tem/n4.lyx
index 574a4a5..2f3a2e7 100644
--- a/tem/n4.lyx
+++ b/tem/n4.lyx
@@ -369,7 +369,7 @@ Demostración:
\end_inset
y definimos
-\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
+\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
\end_inset
.
diff --git a/ts/n1.lyx b/ts/n1.lyx
index 8874cc3..4936758 100644
--- a/ts/n1.lyx
+++ b/ts/n1.lyx
@@ -268,7 +268,7 @@ entorno
\end_inset
es un elemento de
-\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$
+\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$
\end_inset
.
@@ -459,7 +459,7 @@ abierta
a
\begin_inset Formula
\[
-B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}.
+B_{d}(x,\delta):=\{y\in X\mid d(x,y)<\varepsilon\}.
\]
\end_inset
@@ -485,7 +485,7 @@ inducida
\end_inset
a la topología
-\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$
+\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$
\end_inset
.
@@ -578,7 +578,7 @@ La
-esfera
\series default
,
-\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
+\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
\end_inset
.
@@ -630,7 +630,7 @@ El
cilindro
\series default
,
-\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$
+\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$
\end_inset
, cono de rotación sobre el eje
@@ -666,7 +666,7 @@ El
toro
\series default
,
-\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
+\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
\end_inset
, cono de rotación sobre el eje
@@ -674,7 +674,7 @@ toro
\end_inset
de
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}$
\end_inset
.
@@ -695,7 +695,7 @@ status open
\end_inset
Tenemos
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
\end_inset
, luego el cono de rotación es
@@ -1056,7 +1056,7 @@ Como los abiertos en
\end_inset
,
-\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$
+\begin_inset Formula $s^{-1}((a,b))=\{(x,y)\mid a<s(x,y)=x+y<b\}=\{(x,y)\mid a-x<y<b-x\}$
\end_inset
.
@@ -1135,7 +1135,7 @@ Dado
\end_inset
, queremos ver que
-\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$
+\begin_inset Formula $p^{-1}((a,b))=\{(x,y)\mid a<p(x,y)=xy<b\}$
\end_inset
es abierto.
@@ -1217,7 +1217,7 @@ Basta ver que, dada una bola
, su inversa es un abierto.
Tenemos
-\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$
+\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$
\end_inset
, pero
@@ -2043,7 +2043,7 @@ topología generada
\end_inset
a
-\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$
+\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$
\end_inset
, y se tiene que
@@ -2456,7 +2456,7 @@ Dada una base
\end_inset
numerable,
-\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$
+\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$
\end_inset
es base de entornos de
diff --git a/ts/n2.lyx b/ts/n2.lyx
index b70277e..583d4b7 100644
--- a/ts/n2.lyx
+++ b/ts/n2.lyx
@@ -1125,7 +1125,7 @@ Ejemplos de conexión
\begin_layout Enumerate
La hipérbola
-\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}-y^{2}=1\}$
+\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}-y^{2}=1\}$
\end_inset
no es conexa.
@@ -1134,11 +1134,11 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $U:=\{(x,y):x>0\}$
+\begin_inset Formula $U:=\{(x,y)\mid x>0\}$
\end_inset
,
-\begin_inset Formula $V:=\{(x,y):x<0\}$
+\begin_inset Formula $V:=\{(x,y)\mid x<0\}$
\end_inset
e
@@ -1150,7 +1150,7 @@ Sean
\end_inset
, luego
-\begin_inset Formula $Y\subseteq U\cap V=\{(x,y):x\neq0\}$
+\begin_inset Formula $Y\subseteq U\cap V=\{(x,y)\mid x\neq0\}$
\end_inset
;
@@ -1351,7 +1351,7 @@ La función
status open
\begin_layout Plain Layout
-\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\neq0\}$
+\begin_inset Formula ${\cal GL}(3,\mathbb{R})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\neq0\}$
\end_inset
, luego existe la función continua
@@ -1372,7 +1372,7 @@ status open
.
-\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R}):\det A\in\{-1,1\}\}$
+\begin_inset Formula ${\cal O}(3,\mathbb{K})=\{A\in{\cal M}_{3}(\mathbb{R})\mid \det A\in\{-1,1\}\}$
\end_inset
, luego
@@ -2393,7 +2393,7 @@ Sea
.
Ahora bien,
-\begin_inset Formula $\{U_{\delta}:=(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$
+\begin_inset Formula $\{U_{\delta}\mid =(-\infty,z-\delta)\cup(z+\delta,+\infty)\}_{\delta>0}$
\end_inset
es un recubrimiento de
@@ -2750,7 +2750,7 @@ Sea
\end_inset
continua,
-\begin_inset Formula $\text{fix}f:=\{x\in X:f(x)=x\}$
+\begin_inset Formula $\text{fix}f:=\{x\in X\mid f(x)=x\}$
\end_inset
es cerrado en
diff --git a/ts/n3.lyx b/ts/n3.lyx
index 5674436..8443b38 100644
--- a/ts/n3.lyx
+++ b/ts/n3.lyx
@@ -309,7 +309,7 @@ Sean
status open
\begin_layout Plain Layout
-\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$
+\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$
\end_inset
y
@@ -736,7 +736,7 @@ unión disjunta
\end_inset
son espacios topológicos, definimos la topología
-\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$
+\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$
\end_inset
.
@@ -934,7 +934,7 @@ Sea
\end_inset
,
-\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$
+\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$
\end_inset
lo es de
@@ -947,7 +947,7 @@ Sea
.
Del mismo modo
-\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$
+\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$
\end_inset
admite un subrecubrimiento finito
@@ -1122,11 +1122,11 @@ Sean
\end_inset
disjuntos, y basta tomar
-\begin_inset Formula $\{x:(x,0)\in U\}$
+\begin_inset Formula $\{x\mid (x,0)\in U\}$
\end_inset
y
-\begin_inset Formula $\{x:(x,0)\in V\}$
+\begin_inset Formula $\{x\mid (x,0)\in V\}$
\end_inset
.
@@ -1449,7 +1449,7 @@ Dado un abierto
\end_inset
,
-\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$
+\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$
\end_inset
, que es abierto por la hipótesis.
@@ -1479,7 +1479,7 @@ Dado un elemento básico
\end_inset
,
-\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
+\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
\end_inset
, que es abierto.
@@ -2269,7 +2269,7 @@ Sean
\end_inset
, sea
-\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$
+\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$
\end_inset
,
@@ -2360,7 +2360,7 @@ topología cociente
\end_inset
a
-\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$
+\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$
\end_inset
, donde
@@ -2832,7 +2832,7 @@ Si
\end_inset
es Hausdorff si y sólo si
-\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$
+\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$
\end_inset
es cerrado en
diff --git a/ts/n4.lyx b/ts/n4.lyx
index c315d68..3a63435 100644
--- a/ts/n4.lyx
+++ b/ts/n4.lyx
@@ -747,7 +747,7 @@ El recíproco no se cumple:
\begin_layout Enumerate
La corona circular
-\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\in[0,1]\}$
+\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}\mid x^{2}+y^{2}\in[0,1]\}$
\end_inset
es homotópicamente equivalente, pero no homeomorfa, a
diff --git a/ts/n6.lyx b/ts/n6.lyx
index d2acc6e..c61ae70 100644
--- a/ts/n6.lyx
+++ b/ts/n6.lyx
@@ -258,7 +258,7 @@ envoltura convexa
,
\begin_inset Formula
\[
-\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}:\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .
+\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}\;\middle|\;\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} .
\]
\end_inset
@@ -520,6 +520,22 @@ dimensión
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Ejemplos:
\end_layout
@@ -578,6 +594,22 @@ Añadir dibujos.
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Número de Euler
\end_layout