diff options
Diffstat (limited to 'algl/n4.lyx')
| -rw-r--r-- | algl/n4.lyx | 1759 |
1 files changed, 1759 insertions, 0 deletions
diff --git a/algl/n4.lyx b/algl/n4.lyx new file mode 100644 index 0000000..cf26416 --- /dev/null +++ b/algl/n4.lyx @@ -0,0 +1,1759 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Determinante de una matriz. + Propiedades +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:U_{1}\times\dots\times U_{n}\rightarrow V$ +\end_inset + + es una +\series bold +aplicación multilineal +\series default + si es lineal en cada una de las +\begin_inset Formula $n$ +\end_inset + + variables, es decir, si +\begin_inset Formula +\[ +f(u_{1},\dots,\alpha u_{i}+\beta u_{i}^{\prime},\dots,u_{n})=\alpha f(u_{1},\dots,u_{i},\dots,u_{n})+\beta f(u_{1},\dots,u_{i}^{\prime},\dots,u_{n}) +\] + +\end_inset + +Una aplicación multilineal +\begin_inset Formula $f:U^{n}\rightarrow V$ +\end_inset + + se llama +\series bold +aplicación +\begin_inset Formula $n$ +\end_inset + +-lineal +\series default +. + Si además +\begin_inset Formula $V=K$ +\end_inset + + es una +\series bold +forma +\begin_inset Formula $n$ +\end_inset + +-lineal +\series default +. + Una forma +\begin_inset Formula $n$ +\end_inset + +-lineal +\begin_inset Formula $f:U^{n}\rightarrow K$ +\end_inset + + es +\series bold +alternada +\series default + si se anula en cada +\begin_inset Formula $n$ +\end_inset + +-upla con dos componentes iguales, es decir, tal que +\begin_inset Formula $f(u_{1},\dots,u_{k},\dots,u_{l},\dots,u_{n})=0$ +\end_inset + + cuando +\begin_inset Formula $u_{k}=u_{l}$ +\end_inset + + (con +\begin_inset Formula $k\neq l$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Una +\series bold +aplicación determinante +\series default + +\begin_inset Formula $\det:M_{n}(K)\rightarrow K$ +\end_inset + + es una forma +\begin_inset Formula $n$ +\end_inset + +-lineal alternada que a cada matriz cuadrada +\begin_inset Formula $A$ +\end_inset + + le asigna un escalar, llamado +\series bold +determinante +\series default + de +\begin_inset Formula $A$ +\end_inset + +, que denotamos +\begin_inset Formula $\det(A)$ +\end_inset + +, +\begin_inset Formula $|A|$ +\end_inset + + o +\begin_inset Formula $\det(A_{1},\dots,A_{n})$ +\end_inset + + (donde +\begin_inset Formula $A_{i}$ +\end_inset + + son las columnas de +\begin_inset Formula $A$ +\end_inset + +), tal que +\begin_inset Formula $|I_{n}|=1$ +\end_inset + +. + Algunas aplicaciones determinantes son: +\end_layout + +\begin_layout Enumerate +La aplicación +\begin_inset Formula $||:M_{2}(K)\rightarrow K$ +\end_inset + + dada por +\begin_inset Formula +\[ +\left|\begin{array}{cc} +a_{11} & a_{12}\\ +a_{21} & a_{22} +\end{array}\right|=a_{11}a_{22}-a_{12}a_{21} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +La +\series bold +regla de Sarrus +\series default +, aplicación +\begin_inset Formula $||:M_{3}(K)\rightarrow K$ +\end_inset + + dada por +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +a_{11} & a_{12} & a_{13}\\ +a_{21} & a_{22} & a_{23}\\ +a_{31} & a_{32} & a_{33} +\end{array}\right|=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Las aplicaciones determinantes verifican que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\left|\begin{array}{cccc} +a_{1} & 0 & \cdots & 0\\ +0 & a_{2} & \cdots & 0\\ +\vdots & \vdots & \ddots & \vdots\\ +0 & 0 & \cdots & a_{n} +\end{array}\right|=a_{1}a_{2}\cdots a_{n} +\] + +\end_inset + +Si +\begin_inset Formula $\{e_{1},\dots,e_{n}\}$ +\end_inset + + es la base canónica de +\begin_inset Formula $K^{n}$ +\end_inset + +, +\begin_inset Formula +\[ +\left|\begin{array}{cccc} +a_{1} & 0 & \cdots & 0\\ +0 & a_{2} & \cdots & 0\\ +\vdots & \vdots & \ddots & \vdots\\ +0 & 0 & \cdots & a_{n} +\end{array}\right|=\det(a_{1}e_{1},\dots,a_{n}e_{n})=a_{1}\cdots a_{n}\det(e_{1},\dots,e_{n})=a_{1}\cdots a_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + tiene una columna nula entonces +\begin_inset Formula $\det(A)=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si +\begin_inset Formula $A_{i}=0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\begin{array}{c} +\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n})=\det(A_{1},\dots,A_{i-1},0+0,A_{i+1},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n})+\det(A_{1},\dots,A_{i-1},0,A_{i+1},\dots,A_{n}) +\end{array} +\] + +\end_inset + +luego +\begin_inset Formula $\det A=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Al intercambiar dos columnas, el determinante cambia de signo. +\begin_inset Formula +\[ +\begin{array}{c} +0=\det(A_{1},\dots,A_{i}+A_{j},\dots,A_{i}+A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{i},\dots,A_{n})+\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\\ ++\det(A_{1},\dots,A_{j},\dots,A_{i},\dots,A_{n})+\det(A_{1},\dots,A_{j},\dots,A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\det(A_{1},\dots,A_{j},\dots,A_{i},\dots,A_{n}) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si a una columna se le añade otra multiplicada por un escalar, el determinante + no varía. +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\[ +\begin{array}{c} +\det(A_{1},\dots,A_{i}+\alpha A_{j},\dots,A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n})+\alpha\det(A_{1},\dots,A_{j},\dots,A_{j},\dots,A_{n})=\\ +=\det(A_{1},\dots,A_{i},\dots,A_{j},\dots,A_{n}) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si las columnas de una matriz cuadrada son linealmente dependientes, su + determinante es 0. + Por tanto una matriz no invertible tiene determinante 0. +\begin_inset Newline newline +\end_inset + +Habrá una columna que será combinación lineal del resto: +\begin_inset Formula $A_{k}=\sum_{j\neq k}\alpha_{j}A_{j}$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +\begin{array}{c} +\det(A_{1},\dots,A_{k},\dots,A_{n})=\det(A_{1},\dots,\sum_{j\neq k}\alpha_{j}A_{j},\dots,A_{n})=\\ +=\sum_{j\neq k}\alpha_{j}\det(A_{1},\dots,A_{j},\dots,A_{n})=0 +\end{array} +\] + +\end_inset + +Ya que cada matriz del último sumatorio tiene dos columnas iguales. +\end_layout + +\begin_layout Standard +De aquí podemos deducir que +\begin_inset Formula $|E_{n}(i,j)|=-1$ +\end_inset + +, +\begin_inset Formula $|E_{n}(\alpha[i])|=\alpha$ +\end_inset + + y +\begin_inset Formula $|E_{n}([i]+\alpha[j])|=1$ +\end_inset + +, y que si +\begin_inset Formula $A,E\in M_{n}(K)$ +\end_inset + +, siendo +\begin_inset Formula $E$ +\end_inset + + una matriz elemental, entonces +\begin_inset Formula $|AE|=|A||E|$ +\end_inset + +. + Se deducen los siguientes teoremas: +\end_layout + +\begin_layout Enumerate +Una matriz cuadrada +\begin_inset Formula $A$ +\end_inset + + es invertible si y sólo si +\begin_inset Formula $|A|\neq0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Toda matriz invertible es producto de matrices elementales, y por lo anterior, + +\begin_inset Formula $|A|=|I_{n}E_{1}\cdots E_{k}|=|I_{n}||E_{1}|\cdots|E_{k}|=|E_{1}|\cdots|E_{k}|$ +\end_inset + +. + Como ninguno de los factores es nulo, se tiene que +\begin_inset Formula $|A|\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Inmediato de la última propiedad. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A,B\in M_{n}(K)$ +\end_inset + +, entonces +\begin_inset Formula $|AB|=|A||B|$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Si alguna de las dos no es invertible, su producto tampoco (pues si lo fuera, + +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + serían invertibles). + En tal caso, +\begin_inset Formula $|AB|=0=|A||B|$ +\end_inset + +. + Si son ambas invertibles, existen matrices elementales +\begin_inset Formula $E_{1},\dots,E_{k}$ +\end_inset + + con +\begin_inset Formula $B=E_{1}\cdots E_{k}$ +\end_inset + +, por lo que +\begin_inset Formula $|AB|=|AE_{1}\cdots E_{k}|=|A||E_{1}|\cdots|E_{k}|=|A||B|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí tenemos que +\begin_inset Formula $|A^{-1}|=|A|^{-1}$ +\end_inset + +, pues +\begin_inset Formula $1=|I_{n}|=|AA^{-1}|=|A||A^{-1}|$ +\end_inset + +. + Tenemos también que la aplicación determinante es única, pues +\begin_inset Formula $\det(A)=0$ +\end_inset + + para matrices no invertibles y +\begin_inset Formula $\det(A)=|E_{1}|\cdots|E_{k}|$ +\end_inset + + para aquellas que sí lo son, y podemos entonces comprobar que esta operación + está bien definida. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + +\begin_inset Formula $|A^{t}|=|A|$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A$ +\end_inset + + no es invertible, +\begin_inset Formula $A^{t}$ +\end_inset + + tampoco, por lo que +\begin_inset Formula $|A^{t}|=0=|A|$ +\end_inset + +. + Si lo es, existen +\begin_inset Formula $E_{1},\dots,E_{k}$ +\end_inset + + con +\begin_inset Formula $A=E_{1}\cdots E_{k}$ +\end_inset + +, por lo que +\begin_inset Formula $|A^{t}|=|(E_{1}\cdots E_{k})^{t}|=|E_{k}^{t}\cdots E_{1}^{t}|=|E_{k}^{t}|\cdots|E_{1}^{t}|=|E_{1}|\cdots|E_{k}|=|E_{1}\cdots E_{k}|=|A|$ +\end_inset + +. + Esto significa que todo lo relativo a determinantes que se diga para columnas + también es válido para filas. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A=(a_{ij})\in M_{n}(K)$ +\end_inset + + e +\begin_inset Formula $i,j\in\{1,\dots,n\}$ +\end_inset + +, llamamos +\series bold +menor complementario +\series default + del elemento +\begin_inset Formula $a_{ij}$ +\end_inset + + al determinante +\begin_inset Formula $|A_{ij}|$ +\end_inset + + de la matriz +\begin_inset Formula $A_{ij}\in M_{n-1}(K)$ +\end_inset + + resultado de eliminar la fila +\begin_inset Formula $i$ +\end_inset + + y la columna +\begin_inset Formula $j$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +. + Llamamos +\series bold +adjunto +\series default + de +\begin_inset Formula $a_{ij}$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + al escalar +\begin_inset Formula $\Delta_{ij}:=(-1)^{i+j}|A_{ij}|$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Las aplicaciones +\begin_inset Formula $||:M_{n}(K)\rightarrow K$ +\end_inset + + definidas para +\begin_inset Formula $n=1$ +\end_inset + + como +\begin_inset Formula $|(a)|=a$ +\end_inset + + y para +\begin_inset Formula $n>1$ +\end_inset + + como +\begin_inset Formula $|(a_{ij})|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}$ +\end_inset + + son aplicaciones determinante. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n=1$ +\end_inset + + es trivial. + Ahora supongamos que la aplicación determinante está definida para +\begin_inset Formula $n-1$ +\end_inset + + y probamos que se cumplen las condiciones para +\begin_inset Formula $n-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Multilineal: Sea +\begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{n})\in M_{n}(K)$ +\end_inset + + y +\begin_inset Formula $A^{\prime}=(a_{ij}^{\prime})=(A_{1},\dots,\alpha A_{k},\dots,A_{n})$ +\end_inset + +. + Entonces +\begin_inset Formula $a_{ik}^{\prime}=\alpha a_{ik}$ +\end_inset + + y para +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $a_{ij}^{\prime}=a_{ij}$ +\end_inset + +. + Si llamamos +\begin_inset Formula $\Delta_{ij}$ +\end_inset + + y +\begin_inset Formula $\Delta_{ij}^{\prime}$ +\end_inset + + a los correspondientes adjuntos, +\begin_inset Formula $\Delta_{ik}^{\prime}=\Delta_{ik}$ +\end_inset + + y para +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $\Delta_{ij}^{\prime}=\alpha\Delta_{ij}$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +\begin{array}{c} +|A^{\prime}|=a_{11}^{\prime}\Delta_{11}^{\prime}+\dots+a_{1n}^{\prime}\Delta_{1n}^{\prime}=\\ +=a_{11}\alpha\Delta_{11}+\dots+a_{1(k-1)}\alpha\Delta_{1(k-1)}+\alpha a_{1k}\Delta_{ik}+a_{1(k+1)}\alpha\Delta_{i(k+1)}+\dots+a_{1n}\alpha\Delta_{in}=\\ +=\alpha(a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n})=\alpha|A| +\end{array} +\] + +\end_inset + +Del mismo modo, sea +\begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{k}^{\prime}+A_{k}^{\prime\prime},\dots,A_{n})$ +\end_inset + + y sean +\begin_inset Formula $A^{\prime}=(a_{ij}^{\prime})=(A_{1},\dots,A_{k}^{\prime},\dots,A_{n})$ +\end_inset + + y +\begin_inset Formula $A^{\prime\prime}=(a_{ij}^{\prime\prime})=(A_{1},\dots,A_{k}^{\prime\prime},\dots,A_{n})$ +\end_inset + +. + Entonces +\begin_inset Formula $a_{ik}=a_{ik}^{\prime}+a_{ik}^{\prime\prime}$ +\end_inset + + y si +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ +\end_inset + +. + Del mismo modo, +\begin_inset Formula $\Delta_{ik}=\Delta_{ik}^{\prime}=\Delta_{ik}^{\prime\prime}$ +\end_inset + + y si +\begin_inset Formula $j\neq k$ +\end_inset + +, +\begin_inset Formula $\Delta_{ij}=\Delta_{ij}^{\prime}+\Delta_{ij}^{\prime\prime}$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\begin{array}{c} +|A|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}=\\ +=a_{11}(\Delta_{11}^{\prime}+\Delta_{11}^{\prime\prime})+\dots+a_{1(k-1)}(\Delta_{1(k-1)}^{\prime}+\Delta_{1(k-1)}^{\prime\prime})+(a_{1k}^{\prime}+a_{1k}^{\prime\prime})\Delta_{1k}+\\ ++a_{1(k+1)}(\Delta_{1(k+1)}^{\prime}+\Delta_{1(k+1)}^{\prime\prime})+\dots+a_{1n}(\Delta_{1n}^{\prime}+\Delta_{1n}^{\prime\prime})=\\ +=a_{11}^{\prime}\Delta_{11}^{\prime}+\dots+a_{1n}\Delta_{1n}^{\prime}+a_{11}^{\prime\prime}\Delta_{11}^{\prime\prime}+\dots+a_{1n}\Delta_{1n}^{\prime\prime}=|A^{\prime}|+|A^{\prime\prime}| +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Alternada: Sea +\begin_inset Formula $A=(a_{ij})=(A_{1},\dots,A_{n})\in M_{n}(K)$ +\end_inset + +. + Si para +\begin_inset Formula $r<s$ +\end_inset + + se tiene que +\begin_inset Formula $A_{r}=A_{s}$ +\end_inset + +, entonces +\begin_inset Formula $a_{r}=a_{s}$ +\end_inset + + y para +\begin_inset Formula $j\neq r,s$ +\end_inset + +, se tiene que +\begin_inset Formula $\Delta_{1j}=0$ +\end_inset + +, pues el menor complementario posee dos columnas iguales, por lo que +\begin_inset Formula $|A|=a_{11}\Delta_{11}+\dots+a_{1n}\Delta_{1n}=a_{1r}\Delta_{1r}+a_{1s}\Delta_{1s}$ +\end_inset + +. + Por otro lado, si llamamos +\begin_inset Formula $A_{j}^{\prime}$ +\end_inset + + al elemento de +\begin_inset Formula $A_{j}$ +\end_inset + + resultado de eliminar +\begin_inset Formula $a_{1j}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\begin{array}{c} +|A_{1s}|=|(A_{1}^{\prime},\dots,A_{r-1}^{\prime},A_{r}^{\prime},A_{r+1}^{\prime},\dots,A_{s-1}^{\prime},A_{s+1}^{\prime},\dots,A_{n}^{\prime})|=\\ +=-|(A_{1}^{\prime},\dots,A_{r-1}^{\prime},A_{r+1}^{\prime},A_{r}^{\prime},\dots,A_{s-1}^{\prime},A_{s+1}^{\prime},\dots,A_{n}^{\prime})|=\dots=\\ +=(-1)^{s-r-1}|(A_{1}^{\prime},\dots,A_{r-1}^{\prime},A_{r+1}^{\prime},\dots,A_{s-1}^{\prime},A_{r}^{\prime},A_{s+1}^{\prime},\dots,A_{n})|=(-1)^{s-r-1}|A_{1r}| +\end{array} +\] + +\end_inset + +pues +\begin_inset Formula $A_{r}^{\prime}=A_{s}^{\prime}$ +\end_inset + +. + Por tanto +\begin_inset Formula +\[ +\begin{array}{c} +|A|=a_{1r}(-1)^{1+r}|A_{1r}|+a_{1s}(-1)^{1+s}(-1)^{s-r-1}|A_{1r}|=\\ +=a_{1r}|A_{1r}|((-1)^{1+r}+(-1)^{1+2s-r-1})=a_{1r}|A_{1r}|((-1)^{1+r}+(-1)^{-r})=0 +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|I_{n}|=\delta_{11}\Delta_{11}+\dots+\delta_{1n}\Delta_{1n}=\Delta_{11}=(-1)^{1+1}|I_{n-1}|=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Se puede probar que, para +\begin_inset Formula $1\leq i\leq n$ +\end_inset + +, cada aplicación dada por +\begin_inset Formula $|A|=a_{i1}\Delta_{i1}+\dots+a_{in}\Delta_{in}$ +\end_inset + +, que llamamos +\series bold +desarrollo del determinante +\series default + de la matriz +\begin_inset Formula $A$ +\end_inset + + por la +\begin_inset Formula $i$ +\end_inset + +-ésima fila, también cumple las condiciones. + Por otro lado, como +\begin_inset Formula $|A|=|A^{t}|$ +\end_inset + +, también se puede desarrollar por filas. + En la práctica se pueden hacer operaciones elementales para obtener ceros + en una fila o columna y luego desarrollar por ella. +\end_layout + +\begin_layout Standard + +\series bold +Determinantes de Vandermonde: +\series default + Restando a cada fila la anterior por +\begin_inset Formula $x_{1}$ +\end_inset + +, desarrollando, dividiendo lo resultante por cada elemento de la primera + fila y repitiendo el proceso, se tiene que: +\begin_inset Formula +\[ +\begin{array}{c} +\left|\begin{array}{cccc} +1 & 1 & \cdots & 1\\ +x_{1} & x_{2} & \cdots & x_{n}\\ +\vdots & \vdots & & \vdots\\ +x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} +\end{array}\right|=\left|\begin{array}{cccc} +1 & 1 & \cdots & 1\\ +0 & x_{2}-x_{1} & \cdots & x_{n}-x_{1}\\ +\vdots & \vdots & & \vdots\\ +0 & x_{2}^{n-1}-x_{1}x_{2}^{n-2} & \cdots & x_{n}^{n-1}-x_{1}x_{n}^{n-2} +\end{array}\right|=\\ +=(x_{2}-x_{1})\cdots(x_{n}-x_{1})\left|\begin{array}{ccc} +1 & \cdots & 1\\ +x_{2} & \cdots & x_{n}\\ +\vdots & & \vdots\\ +x_{2}^{n-2} & \cdots & x_{n}^{n-2} +\end{array}\right|=\dots=\prod_{1\leq j<i\leq n}(x_{i}-x_{j}) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Desarrollo de un determinante por menores, de +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +sa +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +rro +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +llo de Laplace +\end_layout + +\begin_layout Standard +Se llama +\series bold +submatriz +\series default + de +\begin_inset Formula $A$ +\end_inset + + a la obtenida al eliminar determinadas filas y columnas de +\begin_inset Formula $A$ +\end_inset + +. + Toda matriz es submatriz de sí misma. + Un +\series bold +menor de orden +\begin_inset Formula $n$ +\end_inset + + +\series default + es el determinante de una submatriz de tamaño +\begin_inset Formula $n\times n$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + es cuadrada, el +\series bold +menor complementario +\series default + +\begin_inset Formula $M^{\prime}$ +\end_inset + + del menor +\begin_inset Formula $M$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + + es el determinante de la matriz formada por las filas y columnas restantes. + Un menor es de +\series bold +clase par +\series default + o de +\series bold +clase impar +\series default + según lo sea la suma de los índices de sus filas ( +\begin_inset Formula $i_{1},\dots,i_{p}$ +\end_inset + +) y columnas ( +\begin_inset Formula $j_{1},\dots,j_{p}$ +\end_inset + +). + La +\series bold +signatura +\series default + de un menor +\begin_inset Formula $M$ +\end_inset + + es +\begin_inset Formula $\varepsilon(M)=(-1)^{(i_{1}+\dots+i_{p})+(j_{1}+\dots+j_{p})}$ +\end_inset + +. + Como +\begin_inset Formula $(1+\dots+n)+(1+\dots+n)$ +\end_inset + + es par, todo menor tiene la misma signatura que su complementario. +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $\chi_{r}$ +\end_inset + + al conjunto de combinaciones de +\begin_inset Formula $r$ +\end_inset + + filas o columnas: +\begin_inset Formula +\[ +\chi_{r}=\{(i_{1},\dots,i_{r}):1\leq i_{1}<\dots<i_{r}\leq n\} +\] + +\end_inset + +Si +\begin_inset Formula $I,J\in\chi_{r}$ +\end_inset + +, llamamos +\begin_inset Formula $A_{IJ}$ +\end_inset + + al menor determinado por las filas +\begin_inset Formula $I$ +\end_inset + + y las columnas +\begin_inset Formula $J$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Itemize +Dado +\begin_inset Formula $I\in\chi_{r}$ +\end_inset + +, +\begin_inset Formula $|A|=\sum_{J\in\chi_{r}}\varepsilon(A_{IJ})A_{IJ}A_{IJ}^{\prime}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Dado +\begin_inset Formula $J\in\chi_{r}$ +\end_inset + +, +\begin_inset Formula $|A|=\sum_{I\in\chi_{r}}\varepsilon(A_{IJ})A_{IJ}A_{IJ}^{\prime}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Esto es útil cuando +\begin_inset Formula $A$ +\end_inset + + está formada por bloques de tamaño adecuado alguno de los cuales es nulo. + De aquí se tiene que +\begin_inset Formula $\left|\left(\begin{array}{c|c} +P & Q\\ +\hline 0 & R +\end{array}\right)\right|=|P||R|$ +\end_inset + +. +\end_layout + +\begin_layout Section +Determinante de un endomorfismo +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}^{\prime}$ +\end_inset + + son bases de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $f\in\text{End}(V)$ +\end_inset + +, entonces +\begin_inset Formula +\[ +M_{{\cal B}}(f)=M_{{\cal B}{\cal B}^{\prime}}M_{{\cal B}^{\prime}}(f)M_{{\cal B}^{\prime}{\cal B}}=P^{-1}M_{{\cal B}^{\prime}}(f)P +\] + +\end_inset + +por lo que +\begin_inset Formula $|M_{{\cal B}}(f)|=|P|^{-1}|M_{{\cal B}^{\prime}}(f)||P|=|M_{{\cal B}^{\prime}}(f)|$ +\end_inset + +. + Así, llamamos +\series bold +determinante del endomorfismo +\begin_inset Formula $f$ +\end_inset + + +\series default + al de la matriz asociada a +\begin_inset Formula $f$ +\end_inset + + respecto de cualquier base de +\begin_inset Formula $V$ +\end_inset + +. +\end_layout + +\begin_layout Section +Matriz adjunta. + Aplicación al cálculo de la inversa +\end_layout + +\begin_layout Standard +Llamamos +\series bold +matriz adjunta +\series default + de +\begin_inset Formula $A$ +\end_inset + + a la matriz +\begin_inset Formula $\hat{A}=(\Delta_{ij})\in M_{n}(K)$ +\end_inset + +. + +\series bold +Teorema: +\series default + Si +\begin_inset Formula $A\in M_{n}(K)$ +\end_inset + +, entonces +\begin_inset Formula $A\cdot\hat{A}^{t}=\hat{A}^{t}\cdot A=|A|I_{n}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A=(a_{ij})$ +\end_inset + +, +\begin_inset Formula $\hat{A}=(\Delta_{ij})$ +\end_inset + + y +\begin_inset Formula $\hat{A}^{t}=(b_{ij})$ +\end_inset + +, entonces +\begin_inset Formula $b_{ij}=\Delta_{ji}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $C=(c_{ij})=A\cdot\hat{A}^{t}$ +\end_inset + +, entonces +\begin_inset Formula $c_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}=\sum_{k=1}^{n}a_{ik}\Delta_{jk}$ +\end_inset + +. + Para +\begin_inset Formula $i\neq j$ +\end_inset + +, esto corresponde al desarrollo por la fila +\begin_inset Formula $j$ +\end_inset + +-ésima del determinante de la matriz que se diferencia de +\begin_inset Formula $A$ +\end_inset + + en que tiene la fila +\begin_inset Formula $i$ +\end_inset + +-ésima copiada en la +\begin_inset Formula $j$ +\end_inset + +-ésima, por lo que entonces +\begin_inset Formula $c_{ij}=0$ +\end_inset + +. + Si +\begin_inset Formula $i\neq j$ +\end_inset + +, este es el desarrollo por la fila +\begin_inset Formula $j$ +\end_inset + +-ésima de +\begin_inset Formula $A$ +\end_inset + +, por lo que +\begin_inset Formula $c_{ii}=|A|$ +\end_inset + + y +\begin_inset Formula $C=|A|I_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como consecuencia, se tiene el +\series bold +teorema +\series default + de que +\begin_inset Formula $A$ +\end_inset + + es invertible si y sólo si +\begin_inset Formula $|A|\neq0$ +\end_inset + + y entonces +\begin_inset Formula +\[ +A^{-1}=\frac{1}{|A|}\hat{A}^{t} +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Cálculo del rango de una matriz por determinantes +\end_layout + +\begin_layout Standard +El rango de +\begin_inset Formula $A$ +\end_inset + + es el mayor de los órdenes de los menores no nulos de +\begin_inset Formula $A$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $A=(a_{ij})\in M_{m,n}(K)$ +\end_inset + + con +\begin_inset Formula $A\neq0$ +\end_inset + +, +\begin_inset Formula $r=\text{rang}(A)$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + el mayor de los tamaños de los menores no nulos, que existe si +\begin_inset Formula $A\neq0$ +\end_inset + +. + Si +\begin_inset Formula $A^{\prime}$ +\end_inset + + es una submatriz cuadrada de +\begin_inset Formula $A$ +\end_inset + + de tamaño +\begin_inset Formula $p\times p$ +\end_inset + + con +\begin_inset Formula $|A^{\prime}|\neq0$ +\end_inset + +, entonces la submatriz +\begin_inset Formula $B$ +\end_inset + + formada por las filas de +\begin_inset Formula $A^{\prime}$ +\end_inset + + pero con todas las columnas de +\begin_inset Formula $A$ +\end_inset + + tiene +\begin_inset Formula $p$ +\end_inset + + columnas linealmente independientes (las de +\begin_inset Formula $A^{\prime}$ +\end_inset + +) y por tanto también tiene +\begin_inset Formula $p$ +\end_inset + + filas linealmente independientes, pero entonces +\begin_inset Formula $A$ +\end_inset + + tiene al menos +\begin_inset Formula $p$ +\end_inset + + filas linealmente independientes y +\begin_inset Formula $r\geq p$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $A_{i_{1}},\dots,A_{i_{r}}$ +\end_inset + + son filas linealmente independientes de +\begin_inset Formula $A$ +\end_inset + + y tomamos la submatriz +\begin_inset Formula $B\in M_{r,n}(K)$ +\end_inset + + formada por estas filas y todas las columnas, +\begin_inset Formula $B$ +\end_inset + + tendrá rango +\begin_inset Formula $r$ +\end_inset + +, luego tendrá +\begin_inset Formula $r$ +\end_inset + + columnas +\begin_inset Formula $j_{1},\dots,j_{r}$ +\end_inset + + linealmente independientes. + Si tomamos la submatriz +\begin_inset Formula $A^{\prime}\in M_{r}(K)$ +\end_inset + + formada por estas columnas, al ser linealmente independientes, +\begin_inset Formula $|A^{\prime}|\neq0$ +\end_inset + +, luego +\begin_inset Formula $p\geq r$ +\end_inset + +. + Por tanto +\begin_inset Formula $p=r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $A_{i}=(a_{1i},\dots,a_{ni})\in K^{n}$ +\end_inset + + con +\begin_inset Formula $A_{1},\dots,A_{r}$ +\end_inset + + linealmente independientes y +\begin_inset Formula +\[ +\left|\begin{array}{ccc} +a_{i_{1}1} & \cdots & a_{i_{1}r}\\ +\vdots & \ddots & \vdots\\ +a_{i_{r}1} & \cdots & a_{i_{r}r} +\end{array}\right|\neq0 +\] + +\end_inset + + +\begin_inset Formula $B=(b_{1},\dots,b_{n})$ +\end_inset + + es combinación lineal de +\begin_inset Formula $A_{1},\dots,A_{r}$ +\end_inset + + si y sólo si para todo +\begin_inset Formula $j$ +\end_inset + +, +\begin_inset Formula +\[ +\left|\begin{array}{cccc} +a_{i_{1}1} & \dots & a_{i_{1}r} & b_{i_{1}}\\ +\vdots & \ddots & \vdots & \vdots\\ +a_{i_{r}1} & \cdots & a_{i_{r}r} & b_{i_{r}}\\ +a_{j1} & \cdots & a_{jr} & b_{j} +\end{array}\right|=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si son linealmente dependientes, los determinantes son nulos. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si todos son nulos, desarrollando por la última fila, se obtiene, para cada + +\begin_inset Formula $j$ +\end_inset + +, que +\begin_inset Formula +\[ +a_{j1}\left|\begin{array}{cccc} +a_{i_{1}2} & \cdots & a_{i_{1}r} & b_{i_{1}}\\ +\vdots & \ddots & \vdots & \vdots\\ +a_{i_{r}2} & \cdots & a_{i_{r}r} & b_{i_{r}} +\end{array}\right|\pm\dots\pm b_{j}\left|\begin{array}{ccc} +a_{i_{1}1} & \cdots & a_{i_{1}r}\\ +\vdots & \ddots & \vdots\\ +a_{i_{r}1} & \cdots & a_{i_{r}r} +\end{array}\right|=0 +\] + +\end_inset + +Por lo que +\begin_inset Formula +\[ +b_{j}=\frac{1}{\left|\begin{array}{ccc} +a_{i_{1}1} & \cdots & a_{i_{1}r}\\ +\vdots & \ddots & \vdots\\ +a_{i_{r}1} & \cdots & a_{i_{r}r} +\end{array}\right|}\left(\pm a_{j1}\left|\begin{array}{ccc} +a_{i_{1}2} & \cdots & b_{i_{1}}\\ +\vdots & \ddots & \vdots\\ +a_{i_{r}2} & \cdots & b_{i_{r}} +\end{array}\right|\pm\dots\pm a_{j_{r}}\left|\begin{array}{ccc} +a_{i_{1}1} & \cdots & b_{i1}\\ +\vdots & \ddots & \vdots\\ +a_{i_{r}1} & \cdots & b_{i_{r}} +\end{array}\right|\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +A efectos prácticos, esto significa que, una vez encontrado un menor no + nulo de orden +\begin_inset Formula $k$ +\end_inset + + en una matriz +\begin_inset Formula $A$ +\end_inset + +, podemos +\emph on +orlarlo +\emph default + (obtener otro añadiendo una fila y una columna a la submatriz) de todas + las formas posibles y, si todos los menores resultantes son nulos, entonces + +\begin_inset Formula $\text{rang}(A)=k$ +\end_inset + +. +\end_layout + +\begin_layout Section +Regla de Cramer +\end_layout + +\begin_layout Standard +Un sistema de ecuaciones lineales +\begin_inset Formula $AX=B$ +\end_inset + + es un +\series bold +sistema de Cramer +\series default + si +\begin_inset Formula $A$ +\end_inset + + es invertible. + En tal caso tiene solución única +\begin_inset Formula $X=A^{-1}B$ +\end_inset + +. + +\series bold +Regla de Cramer: +\series default + si las columnas de +\begin_inset Formula $A$ +\end_inset + + son +\begin_inset Formula $(A_{1},\dots,A_{n})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +x_{i}=\frac{\det(A_{1},\dots,A_{i-1},B,A_{i+1},\dots,A_{n})}{\det(A)} +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $A^{-1}=\frac{1}{|A|}\hat{A}^{t}$ +\end_inset + +, y si +\begin_inset Formula $X=(x_{i})$ +\end_inset + +, +\begin_inset Formula $A=(a_{ij})$ +\end_inset + + y +\begin_inset Formula $\hat{A}=(\Delta_{ij})$ +\end_inset + +, entonces +\begin_inset Formula $x_{i}=\sum_{j=1}^{n}\frac{1}{|A|}\Delta_{ji}b_{j}=\frac{1}{|A|}\sum_{j=1}^{n}\Delta_{ji}b_{j}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\in M_{m,n}(K)$ +\end_inset + + con +\begin_inset Formula $\text{rang}(A)=r$ +\end_inset + +, habrá un menor +\begin_inset Formula $M\neq0$ +\end_inset + + de orden +\begin_inset Formula $r$ +\end_inset + +, por lo que las +\begin_inset Formula $n-r$ +\end_inset + + últimas filas serán combinaciones lineales de las +\begin_inset Formula $r$ +\end_inset + + primeras, y moviendo al lado derecho los +\begin_inset Formula $m-r$ +\end_inset + + coeficientes que no están en la submatriz de +\begin_inset Formula $M$ +\end_inset + +, nos queda el sistema +\begin_inset Formula +\[ +\left.\begin{array}{ccc} +a_{11}x_{1}+\dots+a_{1r}x_{r} & = & b_{1}-(a_{1r+1}x_{r+1}+\dots+a_{1n}x_{n})\\ + & \vdots\\ +a_{r1}x_{1}+\dots+a_{rr}x_{r} & = & b_{r}-(a_{rr+1}x_{r+1}+\dots+a_{rn}x_{n}) +\end{array}\right\} +\] + +\end_inset + +que podemos resolver por Cramer. +\end_layout + +\end_body +\end_document |
