aboutsummaryrefslogtreecommitdiff
path: root/bd/n6.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'bd/n6.lyx')
-rw-r--r--bd/n6.lyx14
1 files changed, 7 insertions, 7 deletions
diff --git a/bd/n6.lyx b/bd/n6.lyx
index ced2c05..29cc82f 100644
--- a/bd/n6.lyx
+++ b/bd/n6.lyx
@@ -4639,7 +4639,7 @@ condición
\end_inset
es una condición,
-\begin_inset Formula $\sigma_{C}(R):=(\{r\in R:C(r)\},T,N)$
+\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$
\end_inset
, donde
@@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa
Reunión natural
\series default
: Sea
-\begin_inset Formula $\{j_{1},\dots,j_{p}\}:=\{j:M_{j}\notin\{N_{i}\}\}$
+\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$
\end_inset
, si para
@@ -4805,7 +4805,7 @@ Reunión natural
, entonces
\begin_inset Formula
\[
-R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}}):r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).
+R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).
\]
\end_inset
@@ -4836,7 +4836,7 @@ reunión externa izquierda
\end_inset
como
-\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R:\nexists s\in S:C(r,s)\}\times N_{m})$
+\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$
\end_inset
, la
@@ -4844,7 +4844,7 @@ reunión externa izquierda
reunión externa derecha
\series default
como
-\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S:\nexists r\in R:C(r,s)\})$
+\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$
\end_inset
y la
@@ -4870,7 +4870,7 @@ División
, entonces
\begin_inset Formula
\[
-R\div S:=(\{r:\forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).
+R\div S:=(\{r\mid \forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).
\]
\end_inset
@@ -5220,7 +5220,7 @@ segura
\end_inset
se refiere al conjunto
-\begin_inset Formula $\{T:t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$
+\begin_inset Formula $\{T\mid t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$
\end_inset
.