diff options
Diffstat (limited to 'bd/n6.lyx')
| -rw-r--r-- | bd/n6.lyx | 14 |
1 files changed, 7 insertions, 7 deletions
@@ -4639,7 +4639,7 @@ condición \end_inset es una condición, -\begin_inset Formula $\sigma_{C}(R):=(\{r\in R:C(r)\},T,N)$ +\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$ \end_inset , donde @@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa Reunión natural \series default : Sea -\begin_inset Formula $\{j_{1},\dots,j_{p}\}:=\{j:M_{j}\notin\{N_{i}\}\}$ +\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$ \end_inset , si para @@ -4805,7 +4805,7 @@ Reunión natural , entonces \begin_inset Formula \[ -R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}}):r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M). +R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M). \] \end_inset @@ -4836,7 +4836,7 @@ reunión externa izquierda \end_inset como -\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R:\nexists s\in S:C(r,s)\}\times N_{m})$ +\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$ \end_inset , la @@ -4844,7 +4844,7 @@ reunión externa izquierda reunión externa derecha \series default como -\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S:\nexists r\in R:C(r,s)\})$ +\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$ \end_inset y la @@ -4870,7 +4870,7 @@ División , entonces \begin_inset Formula \[ -R\div S:=(\{r:\forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})). +R\div S:=(\{r\mid \forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})). \] \end_inset @@ -5220,7 +5220,7 @@ segura \end_inset se refiere al conjunto -\begin_inset Formula $\{T:t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$ +\begin_inset Formula $\{T\mid t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$ \end_inset . |
