diff options
Diffstat (limited to 'cyn/n4.lyx')
| -rw-r--r-- | cyn/n4.lyx | 374 |
1 files changed, 374 insertions, 0 deletions
diff --git a/cyn/n4.lyx b/cyn/n4.lyx new file mode 100644 index 0000000..50a4550 --- /dev/null +++ b/cyn/n4.lyx @@ -0,0 +1,374 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una relación es +\series bold +de equivalencia +\series default + si es reflexiva, simétrica y transitiva. + Si +\begin_inset Formula $(a,b)\in R$ +\end_inset + +, escribimos +\begin_inset Formula $aRb$ +\end_inset + +, +\begin_inset Formula $a\sim_{R}b$ +\end_inset + + o, si no causa confusión +\begin_inset Formula $a\sim b$ +\end_inset + +. +\end_layout + +\begin_layout Section +Clases de equivalencia +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + y +\begin_inset Formula $R$ +\end_inset + + una relación de equivalencia en +\begin_inset Formula $A$ +\end_inset + +. + Para cada +\begin_inset Formula $a\in A$ +\end_inset + +, su clase de equivalencia es +\begin_inset Formula $[a]=\{b\in A:a\sim b\}$ +\end_inset + +. + Entonces: +\begin_inset Formula +\[ +[a]\cap[b]\neq\emptyset\iff a\sim_{R}b\iff[a]=[b] +\] + +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + +\begin_inset Formula $x\in[a]\cap[b]\implies a\sim x\land x\sim b\implies a\sim b$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Por hipótesis +\begin_inset Formula $a\sim b$ +\end_inset + +. + Entonces +\begin_inset Formula $x\in[a]\implies x\sim a\implies x\sim b\implies x\in[b]$ +\end_inset + +. + Análogamente, +\begin_inset Formula $y\in[b]\implies y\in[a]$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + +\begin_inset Formula $(a,a)\in R\implies a\in[a]=[b]\implies[a]\cap[b]\neq\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $C$ +\end_inset + + es una clase de equivalencia y +\begin_inset Formula $a\in C$ +\end_inset + + entonces +\begin_inset Formula $[a]=C$ +\end_inset + +, y decimos que +\begin_inset Formula $a$ +\end_inset + + es un +\series bold +representante +\series default + de +\begin_inset Formula $C$ +\end_inset + +. +\end_layout + +\begin_layout Section +El conjunto cociente y la proyección canónica +\end_layout + +\begin_layout Standard +Se define el +\series bold +conjunto cociente +\series default + de +\begin_inset Formula $A$ +\end_inset + + respecto de la relación +\begin_inset Formula $R$ +\end_inset + + como el conjunto de las clases de equivalencia de los elementos de +\begin_inset Formula $A$ +\end_inset + + respecto de +\begin_inset Formula $R$ +\end_inset + +, y se denota +\begin_inset Formula $A/R$ +\end_inset + +, +\begin_inset Formula $A/\sim_{R}$ +\end_inset + +, +\begin_inset Formula $A/\sim$ +\end_inset + + o +\begin_inset Formula $\frac{A}{\sim}$ +\end_inset + +. + Calcular los conjuntos cociente consiste en dar un +\series bold +juego completo de representantes +\series default +, es decir, describir un conjunto +\begin_inset Formula $R$ +\end_inset + + con uno y solo un representante de cada clase de equivalencia ( +\series bold +conjunto irredundante de representantes +\series default + de las clases de equivalencia). +\end_layout + +\begin_layout Standard +Llamamos +\series bold +proyección canónica +\series default + a la aplicación +\begin_inset Formula $\eta_{R}:A\rightarrow A/R$ +\end_inset + + con +\begin_inset Formula $a\mapsto[a]$ +\end_inset + +. + Siempre es suprayectiva, por la definición de +\begin_inset Formula $A/R$ +\end_inset + +, y solo es inyectiva cuando +\begin_inset Formula $R$ +\end_inset + + es la igualdad. +\end_layout + +\begin_layout Section +Relaciones de equivalencia y particiones +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + e +\begin_inset Formula $I$ +\end_inset + + conjuntos y +\begin_inset Formula $P=\{B_{i}\}_{i\in I}$ +\end_inset + + una familia de subconjuntos de +\begin_inset Formula $A$ +\end_inset + +, decimos que +\begin_inset Formula $P$ +\end_inset + + forma una +\series bold +partición +\series default + para +\begin_inset Formula $A$ +\end_inset + + si se verifica que +\begin_inset Formula $B_{i}\cap B_{j}=\emptyset\iff i\neq j$ +\end_inset + + y +\begin_inset Formula $\bigcup_{i\in I}B_{i}=A$ +\end_inset + +. + Toda relación de equivalencia induce una partición, pues +\begin_inset Formula $[a]\cap[b]=\emptyset\iff a\not\sim b$ +\end_inset + +, lo que se obtiene de las propiedades de las clases de equivalencia, y + +\begin_inset Formula $\cup_{[a]\in A/\sim}[a]=A$ +\end_inset + +, pues +\begin_inset Formula $b\sim b\implies b\in[b]\subseteq\cup_{[a]\in A/\sim}[a]$ +\end_inset + +. + Del mismo modo, toda partición +\begin_inset Formula $\{C_{i}\}_{i\in I}$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + determina una clase de equivalencia, definida por +\begin_inset Formula $a\sim b:\iff\exists i\in I:a,b\in C_{i}$ +\end_inset + +. + Solo quedaría probar que esta es una relación de equivalencia y las clases + de equivalencia son las +\begin_inset Formula $C_{i}$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
