aboutsummaryrefslogtreecommitdiff
path: root/ealg/n2.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ealg/n2.lyx')
-rw-r--r--ealg/n2.lyx78
1 files changed, 39 insertions, 39 deletions
diff --git a/ealg/n2.lyx b/ealg/n2.lyx
index cbcd97d..14447e8 100644
--- a/ealg/n2.lyx
+++ b/ealg/n2.lyx
@@ -221,7 +221,7 @@ Algunas extensiones son
\end_inset
, entonces
-\begin_inset Formula $c:=(a+b\sqrt{m})(a-b\sqrt{m})=a^{2}-mb^{2}\in\mathbb{Q}\setminus0$
+\begin_inset Formula $c\coloneqq (a+b\sqrt{m})(a-b\sqrt{m})=a^{2}-mb^{2}\in\mathbb{Q}\setminus0$
\end_inset
, pues
@@ -311,7 +311,7 @@ subanillo primo
\end_inset
a
-\begin_inset Formula $\mathbb{Z}1:=\{n1_{A}\}_{n\in\mathbb{Z}}$
+\begin_inset Formula $\mathbb{Z}1\coloneqq \{n1_{A}\}_{n\in\mathbb{Z}}$
\end_inset
, el menor subanillo de
@@ -389,7 +389,7 @@ Demostración:
\end_inset
dado por
-\begin_inset Formula $f(n):=n1$
+\begin_inset Formula $f(n)\coloneqq n1$
\end_inset
es un homomorfismo inyectivo y la propiedad universal nos da un homomorfismo
@@ -403,7 +403,7 @@ Demostración:
.
Es claro entonces que
-\begin_inset Formula $K':=\tilde{f}(\mathbb{Q})$
+\begin_inset Formula $K'\coloneqq \tilde{f}(\mathbb{Q})$
\end_inset
es isomorfo a
@@ -506,7 +506,7 @@ grado
\end_inset
a
-\begin_inset Formula $[L:K]:=\dim_{K}L$
+\begin_inset Formula $[L:K]\coloneqq \dim_{K}L$
\end_inset
, la dimensión de
@@ -926,7 +926,7 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $a:=\sum_{i\in I}a_{i}\alpha_{1}^{i_{1}}\cdots\alpha_{p}^{i_{p}},b:=\sum_{j\in J}b_{i}\beta_{1}^{j_{1}}\cdots\beta_{q}^{i_{q}}\in K(S)$
+\begin_inset Formula $a\coloneqq \sum_{i\in I}a_{i}\alpha_{1}^{i_{1}}\cdots\alpha_{p}^{i_{p}},b\coloneqq \sum_{j\in J}b_{i}\beta_{1}^{j_{1}}\cdots\beta_{q}^{i_{q}}\in K(S)$
\end_inset
, con
@@ -1586,7 +1586,7 @@ Extensiones
\end_inset
dada por
-\begin_inset Formula $\hat{\sigma}(\tau):=\sigma\circ\tau\circ\sigma^{-1}$
+\begin_inset Formula $\hat{\sigma}(\tau)\coloneqq \sigma\circ\tau\circ\sigma^{-1}$
\end_inset
es un isomorfismo de grupos, dado que
@@ -1709,15 +1709,15 @@ status open
\begin_layout Plain Layout
Para esto se usa el transporte de estructuras.
Sea
-\begin_inset Formula $\varphi:K\to(L_{0}:=K[X]/(g))$
+\begin_inset Formula $\varphi:K\to(L_{0}\coloneqq K[X]/(g))$
\end_inset
el homomorfismo
-\begin_inset Formula $\varphi(a):=a+(g)$
+\begin_inset Formula $\varphi(a)\coloneqq a+(g)$
\end_inset
, definimos
-\begin_inset Formula $L:=K\amalg(L_{0}\setminus\varphi(K))$
+\begin_inset Formula $L\coloneqq K\amalg(L_{0}\setminus\varphi(K))$
\end_inset
y las operaciones en
@@ -1725,11 +1725,11 @@ Para esto se usa el transporte de estructuras.
\end_inset
-\begin_inset Formula $a+b:=\psi^{-1}(\psi(a)+\psi(b))$
+\begin_inset Formula $a+b\coloneqq \psi^{-1}(\psi(a)+\psi(b))$
\end_inset
y
-\begin_inset Formula $ab:=(\psi(a)\psi(b))$
+\begin_inset Formula $ab\coloneqq (\psi(a)\psi(b))$
\end_inset
, donde
@@ -1737,7 +1737,7 @@ Para esto se usa el transporte de estructuras.
\end_inset
viene dado por
-\begin_inset Formula $\psi(a):=\varphi(a)$
+\begin_inset Formula $\psi(a)\coloneqq \varphi(a)$
\end_inset
para
@@ -1745,7 +1745,7 @@ Para esto se usa el transporte de estructuras.
\end_inset
y
-\begin_inset Formula $\psi(a):=a$
+\begin_inset Formula $\psi(a)\coloneqq a$
\end_inset
para
@@ -1812,7 +1812,7 @@ Demostración:
\end_inset
,
-\begin_inset Formula $L:=K[X]/(g)$
+\begin_inset Formula $L\coloneqq K[X]/(g)$
\end_inset
es un cuerpo.
@@ -2092,7 +2092,7 @@ Si
\end_inset
y
-\begin_inset Formula $\omega:=e^{2\pi i/n}\in\mathbb{C}$
+\begin_inset Formula $\omega\coloneqq e^{2\pi i/n}\in\mathbb{C}$
\end_inset
,
@@ -2315,7 +2315,7 @@ simple
\end_inset
y
-\begin_inset Formula $\alpha:=[X]=X+I\in L$
+\begin_inset Formula $\alpha\coloneqq [X]=X+I\in L$
\end_inset
la raíz, para
@@ -2501,7 +2501,7 @@ Como
\end_deeper
\begin_layout Enumerate
Sea
-\begin_inset Formula $n:=\text{gr}f$
+\begin_inset Formula $n\coloneqq \text{gr}f$
\end_inset
,
@@ -2542,7 +2542,7 @@ Si
\end_inset
pero entonces
-\begin_inset Formula $g:=\sum_{i=0}^{n-1}a_{i}X^{i}\in K[X]\setminus0$
+\begin_inset Formula $g\coloneqq \sum_{i=0}^{n-1}a_{i}X^{i}\in K[X]\setminus0$
\end_inset
tendría a
@@ -2708,7 +2708,7 @@ Si
\end_inset
es primo y
-\begin_inset Formula $\xi:=e^{2\pi i/p}$
+\begin_inset Formula $\xi\coloneqq e^{2\pi i/p}$
\end_inset
,
@@ -2965,11 +2965,11 @@ Demostración:
.
Sean
-\begin_inset Formula $F_{p}:=\mathbb{Q}[\sqrt{p}]$
+\begin_inset Formula $F_{p}\coloneqq \mathbb{Q}[\sqrt{p}]$
\end_inset
y
-\begin_inset Formula $F_{q}:=\mathbb{Q}[\sqrt{q}]$
+\begin_inset Formula $F_{q}\coloneqq \mathbb{Q}[\sqrt{q}]$
\end_inset
,
@@ -2986,12 +2986,12 @@ Demostración:
.
Claramente
-\begin_inset Formula $S:=\{a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}\}_{a,b,c,d\in\mathbb{Q}}\subseteq F_{p}F_{q}$
+\begin_inset Formula $S\coloneqq \{a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}\}_{a,b,c,d\in\mathbb{Q}}\subseteq F_{p}F_{q}$
\end_inset
.
Sea ahora
-\begin_inset Formula $\alpha:=\sqrt{p}+\sqrt{q}\in S$
+\begin_inset Formula $\alpha\coloneqq \sqrt{p}+\sqrt{q}\in S$
\end_inset
,
@@ -3105,7 +3105,7 @@ status open
\end_inset
, es algebraico, y si
-\begin_inset Formula $d:=\text{Irr}(\alpha,K)$
+\begin_inset Formula $d\coloneqq \text{Irr}(\alpha,K)$
\end_inset
,
@@ -3154,7 +3154,7 @@ Sean
\end_inset
un isomorfismo de cuerpos y
-\begin_inset Formula $f':=\sigma(f)$
+\begin_inset Formula $f'\coloneqq \sigma(f)$
\end_inset
con una raíz
@@ -3213,7 +3213,7 @@ Demostración:
.
Sea
-\begin_inset Formula $\hat{\sigma}(g(\alpha)):=\sigma(g)(\alpha')$
+\begin_inset Formula $\hat{\sigma}(g(\alpha))\coloneqq \sigma(g)(\alpha')$
\end_inset
,
@@ -3415,7 +3415,7 @@ Sea
\end_inset
Sea
-\begin_inset Formula $f:=\text{Irr}(\alpha,K)$
+\begin_inset Formula $f\coloneqq \text{Irr}(\alpha,K)$
\end_inset
, sabemos que al ser
@@ -3880,11 +3880,11 @@ grupo cíclico
\end_inset
a
-\begin_inset Formula $C_{n}:=\{1,a,a^{2},\dots,a^{n-1}\}$
+\begin_inset Formula $C_{n}\coloneqq \{1,a,a^{2},\dots,a^{n-1}\}$
\end_inset
con [...]
-\begin_inset Formula $a^{i}a^{j}:=a^{[i+j]_{n}}$
+\begin_inset Formula $a^{i}a^{j}\coloneqq a^{[i+j]_{n}}$
\end_inset
[...].
@@ -3921,7 +3921,7 @@ D_{n}:=\{1,a,a^{2},\dots,a^{n-1},b,ab,a^{2}b,\dots,a^{n-1}b\}
\end_inset
con la operación
-\begin_inset Formula $(a^{i_{1}}b^{j_{1}})(a^{i_{2}}b^{j_{2}}):=a^{[i_{1}+(-1)^{j_{1}}i_{2}]_{n}}b^{[j_{1}+j_{2}]_{2}}$
+\begin_inset Formula $(a^{i_{1}}b^{j_{1}})(a^{i_{2}}b^{j_{2}})\coloneqq a^{[i_{1}+(-1)^{j_{1}}i_{2}]_{n}}b^{[j_{1}+j_{2}]_{2}}$
\end_inset
.
@@ -3962,7 +3962,7 @@ Teorema de Lagrange:
grupo alternado
\series default
[...] a
-\begin_inset Formula $A_{n}:=\ker\text{sgn}$
+\begin_inset Formula $A_{n}\coloneqq \ker\text{sgn}$
\end_inset
, el subgrupo de
@@ -4227,7 +4227,7 @@ status open
Demostración:
\series default
Llamando
-\begin_inset Formula $m:=\text{Exp}K^{*}$
+\begin_inset Formula $m\coloneqq \text{Exp}K^{*}$
\end_inset
,
@@ -4293,7 +4293,7 @@ Llamando
.
Entonces el orden de
-\begin_inset Formula $a:=a_{1}+\dots+a_{k}$
+\begin_inset Formula $a\coloneqq a_{1}+\dots+a_{k}$
\end_inset
es
@@ -4318,7 +4318,7 @@ Sean
\end_inset
primo y
-\begin_inset Formula $\xi:=e^{2\pi i/p}$
+\begin_inset Formula $\xi\coloneqq e^{2\pi i/p}$
\end_inset
,
@@ -4363,7 +4363,7 @@ Demostración:
\end_inset
donde
-\begin_inset Formula $\sigma_{k}(\xi):=\xi^{k}$
+\begin_inset Formula $\sigma_{k}(\xi)\coloneqq \xi^{k}$
\end_inset
.
@@ -4728,7 +4728,7 @@ cuerpo de números algebraicos
cuerpo de los números algebraicos
\series default
a
-\begin_inset Formula ${\cal A}:=\overline{\mathbb{Q}}_{\mathbb{C}}$
+\begin_inset Formula ${\cal A}\coloneqq \overline{\mathbb{Q}}_{\mathbb{C}}$
\end_inset
, y
@@ -4767,7 +4767,7 @@ números algebraicos
\end_inset
para
-\begin_inset Formula $\xi_{p}:=e^{2\pi i/p}$
+\begin_inset Formula $\xi_{p}\coloneqq e^{2\pi i/p}$
\end_inset
, pero
@@ -4935,7 +4935,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $f:=\sum_{i=0}^{n}a_{i}X^{i}\in L[X]$
+\begin_inset Formula $f\coloneqq \sum_{i=0}^{n}a_{i}X^{i}\in L[X]$
\end_inset
que tiene a