aboutsummaryrefslogtreecommitdiff
path: root/fvv2/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'fvv2/n1.lyx')
-rw-r--r--fvv2/n1.lyx52
1 files changed, 26 insertions, 26 deletions
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx
index e7eda47..fee5af0 100644
--- a/fvv2/n1.lyx
+++ b/fvv2/n1.lyx
@@ -128,7 +128,7 @@ integral indefinida
\end_inset
con
-\begin_inset Formula $F(x):=\int_{a}^{x}f$
+\begin_inset Formula $F(x)\coloneqq \int_{a}^{x}f$
\end_inset
.
@@ -243,7 +243,7 @@ rectángulo
\end_inset
-dimensional
-\begin_inset Formula $R:=[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\subset\mathbb{R}^{n}$
+\begin_inset Formula $R\coloneqq [a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\subset\mathbb{R}^{n}$
\end_inset
se define como
@@ -308,7 +308,7 @@ Una
partición
\series default
sobre este rectángulo es una lista
-\begin_inset Formula $P:=(P_{1},\dots,P_{n})$
+\begin_inset Formula $P\coloneqq (P_{1},\dots,P_{n})$
\end_inset
en la que cada
@@ -361,7 +361,7 @@ Si
\end_inset
es acotada y
-\begin_inset Formula $P:=(P_{i})_{i=1}^{n}$
+\begin_inset Formula $P\coloneqq (P_{i})_{i=1}^{n}$
\end_inset
es una partición de
@@ -377,7 +377,7 @@ Si
\end_inset
denotamos
-\begin_inset Formula $m_{S_{h}}(f):=\inf\{f(x)\}_{x\in S_{h}}$
+\begin_inset Formula $m_{S_{h}}(f)\coloneqq \inf\{f(x)\}_{x\in S_{h}}$
\end_inset
y
@@ -1251,7 +1251,7 @@ La función
\end_inset
dada por
-\begin_inset Formula $f(0.c_{1}c_{2}\cdots c_{n}\cdots_{(3)}):=0.\frac{c_{1}}{2}\frac{c_{2}}{2}\cdots\frac{c_{n}}{2}\cdots_{(2)}$
+\begin_inset Formula $f(0.c_{1}c_{2}\cdots c_{n}\cdots_{(3)})\coloneqq 0.\frac{c_{1}}{2}\frac{c_{2}}{2}\cdots\frac{c_{n}}{2}\cdots_{(2)}$
\end_inset
es suprayectiva, luego
@@ -1452,7 +1452,7 @@ Sea
\end_inset
,
-\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$
+\begin_inset Formula $B\coloneqq \{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$
\end_inset
es cerrado.
@@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables
\end_inset
si y sólo si
-\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$
+\begin_inset Formula $B\coloneqq \{x\in R\mid f\text{ no es continua en }x\}$
\end_inset
tiene medida nula.
@@ -1559,7 +1559,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$
+\begin_inset Formula $B_{k}\coloneqq \{x\in R\mid o(f,x)\geq\frac{1}{k}\}$
\end_inset
, basta probar que cada
@@ -1671,7 +1671,7 @@ Fijado
.
Es claro que
-\begin_inset Formula $C:=R\backslash\bigcup_{k}N_{k}$
+\begin_inset Formula $C\coloneqq R\backslash\bigcup_{k}N_{k}$
\end_inset
es compacto, y como para cada
@@ -1868,15 +1868,15 @@ Sean
\end_inset
como
-\begin_inset Formula $lf_{x}(y):=f(x,y)$
+\begin_inset Formula $lf_{x}(y)\coloneqq f(x,y)$
\end_inset
,
-\begin_inset Formula $s_{lf}(x):=\underline{\int_{R_{2}}}lf_{x}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}$
+\begin_inset Formula $s_{lf}(x)\coloneqq \underline{\int_{R_{2}}}lf_{x}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}$
\end_inset
y
-\begin_inset Formula $S_{lf}(x):=\overline{\int_{R_{2}}}lf_{x}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}$
+\begin_inset Formula $S_{lf}(x)\coloneqq \overline{\int_{R_{2}}}lf_{x}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}$
\end_inset
, y para cada
@@ -1884,15 +1884,15 @@ Sean
\end_inset
definimos
-\begin_inset Formula $rf_{y}(x):=f(x,y)$
+\begin_inset Formula $rf_{y}(x)\coloneqq f(x,y)$
\end_inset
,
-\begin_inset Formula $s_{rf}(y):=\int_{R_{1}}rf_{y}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{m}$
+\begin_inset Formula $s_{rf}(y)\coloneqq \int_{R_{1}}rf_{y}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{m}$
\end_inset
y
-\begin_inset Formula $S_{rf}(y):=\overline{\int_{R_{1}}}rf_{y}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{m}$
+\begin_inset Formula $S_{rf}(y)\coloneqq \overline{\int_{R_{1}}}rf_{y}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{m}$
\end_inset
.
@@ -1944,11 +1944,11 @@ En la práctica esto significa que
\end_inset
donde
-\begin_inset Formula $d\vec{x}:=dx_{1}\cdots dx_{n}$
+\begin_inset Formula $d\vec{x}\coloneqq dx_{1}\cdots dx_{n}$
\end_inset
y
-\begin_inset Formula $d\vec{y}:=dy_{1}\cdots dy_{m}$
+\begin_inset Formula $d\vec{y}\coloneqq dy_{1}\cdots dy_{m}$
\end_inset
.
@@ -2408,7 +2408,7 @@ Funciones que contienen
\begin_layout Standard
Llamamos
-\begin_inset Formula $d:=\frac{ac-b^{2}}{a}$
+\begin_inset Formula $d\coloneqq \frac{ac-b^{2}}{a}$
\end_inset
y se tiene
@@ -2787,7 +2787,7 @@ donde
.
Si existe el límite de estas sumas cuando
-\begin_inset Formula $|P|:=\sup\{t_{i}-t_{i-1}\}_{i=1}^{n}$
+\begin_inset Formula $|P|\coloneqq \sup\{t_{i}-t_{i-1}\}_{i=1}^{n}$
\end_inset
tiende a 0 se dice que
@@ -2840,7 +2840,7 @@ Vemos que si
es la identidad entonces la integral es exactamente la de Riemann.
Denotamos
-\begin_inset Formula $\lambda_{\varphi}([a,b]):=\varphi(b)-\varphi(a)$
+\begin_inset Formula $\lambda_{\varphi}([a,b])\coloneqq \varphi(b)-\varphi(a)$
\end_inset
.
@@ -3045,11 +3045,11 @@ Demostración:
.
Sean
-\begin_inset Formula $P:=\{a=x_{0}<\dots<x_{n}=b\}$
+\begin_inset Formula $P\coloneqq \{a=x_{0}<\dots<x_{n}=b\}$
\end_inset
y
-\begin_inset Formula $Q:=\{a=y_{0}<\dots<y_{m}=b\}$
+\begin_inset Formula $Q\coloneqq \{a=y_{0}<\dots<y_{m}=b\}$
\end_inset
particiones con
@@ -3245,15 +3245,15 @@ Demostración:
\end_inset
,
-\begin_inset Formula $x_{1}:=t_{0}=a\in[\xi_{0},\xi_{1}]$
+\begin_inset Formula $x_{1}\coloneqq t_{0}=a\in[\xi_{0},\xi_{1}]$
\end_inset
,
-\begin_inset Formula $x_{i}:=t_{i-1}\in[\xi_{i-1},\xi_{i}]\forall i\in\{1,\dots,n\}$
+\begin_inset Formula $x_{i}\coloneqq t_{i-1}\in[\xi_{i-1},\xi_{i}]\forall i\in\{1,\dots,n\}$
\end_inset
y
-\begin_inset Formula $x_{n+1}:=t_{n}=b\in[\xi_{n},\xi_{n+1}]$
+\begin_inset Formula $x_{n+1}\coloneqq t_{n}=b\in[\xi_{n},\xi_{n+1}]$
\end_inset
.