aboutsummaryrefslogtreecommitdiff
path: root/fvv2/n2.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'fvv2/n2.lyx')
-rw-r--r--fvv2/n2.lyx36
1 files changed, 18 insertions, 18 deletions
diff --git a/fvv2/n2.lyx b/fvv2/n2.lyx
index bd555e8..0442b74 100644
--- a/fvv2/n2.lyx
+++ b/fvv2/n2.lyx
@@ -123,7 +123,7 @@ Un
\end_inset
y
-\begin_inset Formula $A\Delta B:=(A\backslash B)\cup(B\backslash A)\in{\cal A}$
+\begin_inset Formula $A\Delta B\coloneqq (A\backslash B)\cup(B\backslash A)\in{\cal A}$
\end_inset
(diferencia simétrica).
@@ -177,11 +177,11 @@ Una
\end_inset
, tomando la sucesión creciente
-\begin_inset Formula $U_{n}:=\bigcup_{k=1}^{n}A_{k}$
+\begin_inset Formula $U_{n}\coloneqq \bigcup_{k=1}^{n}A_{k}$
\end_inset
, vemos que
-\begin_inset Formula $A:=\bigcup_{n\in\mathbb{N}}A_{n}=\bigcup_{n\in\mathbb{N}}U_{n}\in{\cal A}$
+\begin_inset Formula $A\coloneqq \bigcup_{n\in\mathbb{N}}A_{n}=\bigcup_{n\in\mathbb{N}}U_{n}\in{\cal A}$
\end_inset
.
@@ -239,7 +239,7 @@ Si
\end_inset
es un conjunto de álgebras, su intersección
-\begin_inset Formula $\Sigma:=\bigcap_{\alpha\in A}\Sigma_{\alpha}$
+\begin_inset Formula $\Sigma\coloneqq \bigcap_{\alpha\in A}\Sigma_{\alpha}$
\end_inset
es un álgebra, y si los
@@ -314,7 +314,7 @@ Sea
\end_inset
a
-\begin_inset Formula ${\cal B}(T):=\sigma({\cal J})=\sigma({\cal F})$
+\begin_inset Formula ${\cal B}(T)\coloneqq \sigma({\cal J})=\sigma({\cal F})$
\end_inset
, y sus elementos son los
@@ -356,7 +356,7 @@ Dados
\end_inset
, escribimos
-\begin_inset Formula $[a,b):=\prod_{i=1}^{n}[a_{i},b_{i})$
+\begin_inset Formula $[a,b)\coloneqq \prod_{i=1}^{n}[a_{i},b_{i})$
\end_inset
, y definimos
@@ -634,7 +634,7 @@ espacio de medida
\end_inset
,
-\begin_inset Formula $\Sigma:={\cal P}(\Omega)$
+\begin_inset Formula $\Sigma\coloneqq {\cal P}(\Omega)$
\end_inset
y
@@ -642,7 +642,7 @@ espacio de medida
\end_inset
, la función dada por
-\begin_inset Formula $\mu(E):=\sum_{x\in E}f(x)$
+\begin_inset Formula $\mu(E)\coloneqq \sum_{x\in E}f(x)$
\end_inset
es una medida en
@@ -718,11 +718,11 @@ Subaditividad
\end_inset
Si llamamos
-\begin_inset Formula $B_{1}:=A_{1}$
+\begin_inset Formula $B_{1}\coloneqq A_{1}$
\end_inset
y
-\begin_inset Formula $B_{n}:=A_{n}\backslash\bigcup_{k=1}^{n-1}A_{k}$
+\begin_inset Formula $B_{n}\coloneqq A_{n}\backslash\bigcup_{k=1}^{n-1}A_{k}$
\end_inset
para
@@ -1181,7 +1181,7 @@ Demostración:
.
Entonces
-\begin_inset Formula $\lambda_{n}^{*}(A:=\bigcup_{k=1}^{+\infty}(a'_{k},b_{k}))\leq\sum_{k=1}^{+\infty}((a'_{k},b_{k}))<\sum_{k=1}^{+\infty}(v([a_{k},b_{k}))+\frac{\varepsilon}{2^{k+1}})=\sum_{k=1}^{+\infty}[a_{k},b_{k})+\frac{\varepsilon}{2}<\lambda_{n}^{*}(S)+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\lambda_{n}^{*}(S)+\varepsilon$
+\begin_inset Formula $\lambda_{n}^{*}(A\coloneqq \bigcup_{k=1}^{+\infty}(a'_{k},b_{k}))\leq\sum_{k=1}^{+\infty}((a'_{k},b_{k}))<\sum_{k=1}^{+\infty}(v([a_{k},b_{k}))+\frac{\varepsilon}{2^{k+1}})=\sum_{k=1}^{+\infty}[a_{k},b_{k})+\frac{\varepsilon}{2}<\lambda_{n}^{*}(S)+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\lambda_{n}^{*}(S)+\varepsilon$
\end_inset
.
@@ -1217,7 +1217,7 @@ Lebesgue
medida de Lebesgue
\series default
es
-\begin_inset Formula $\lambda_{n}(M):=\lambda_{n}^{*}(M)$
+\begin_inset Formula $\lambda_{n}(M)\coloneqq \lambda_{n}^{*}(M)$
\end_inset
.
@@ -1242,7 +1242,7 @@ teorema
\end_inset
tal que su intersección
-\begin_inset Formula $B:=\bigcap_{k}A_{k}$
+\begin_inset Formula $B\coloneqq \bigcap_{k}A_{k}$
\end_inset
cumple que
@@ -1293,7 +1293,7 @@ conjuntos
y un conjunto de medida nula.
Si
-\begin_inset Formula $M:=\bigcup_{k}M_{k}$
+\begin_inset Formula $M\coloneqq \bigcup_{k}M_{k}$
\end_inset
es unión numerable de conjuntos medibles,
@@ -1429,7 +1429,7 @@ Demostración:
\end_inset
-\begin_inset Formula $B:=\bigcap_{k}A_{k}$
+\begin_inset Formula $B\coloneqq \bigcap_{k}A_{k}$
\end_inset
tl que
@@ -1751,7 +1751,7 @@ Si la medida exterior de
\end_inset
tiene medida nula y como
-\begin_inset Formula $H:=\bigcup_{k}H_{k}$
+\begin_inset Formula $H\coloneqq \bigcup_{k}H_{k}$
\end_inset
es medible, entonces
@@ -1844,7 +1844,7 @@ Si
\end_inset
, donde
-\begin_inset Formula $c:=\mu([0,1)^{n})$
+\begin_inset Formula $c\coloneqq \mu([0,1)^{n})$
\end_inset
.
@@ -1970,7 +1970,7 @@ teorema para transformaciones lineales
\end_inset
, donde
-\begin_inset Formula $c:=\lambda_{n}(T([0,1)^{n}))=|\det(T)|$
+\begin_inset Formula $c\coloneqq \lambda_{n}(T([0,1)^{n}))=|\det(T)|$
\end_inset
.