aboutsummaryrefslogtreecommitdiff
path: root/fvv2/n3.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'fvv2/n3.lyx')
-rw-r--r--fvv2/n3.lyx16
1 files changed, 8 insertions, 8 deletions
diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx
index a35f67f..11ac40c 100644
--- a/fvv2/n3.lyx
+++ b/fvv2/n3.lyx
@@ -172,7 +172,7 @@ status open
\end_inset
Sea
-\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$
+\begin_inset Formula ${\cal A}:=\{E\in\Sigma'\mid f^{-1}(E)\in\Sigma\}$
\end_inset
, vemos que
@@ -627,7 +627,7 @@ Una función
\end_inset
y la notación
-\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$
+\begin_inset Formula $\{f\bullet a\}\mid =\{\omega\in\Omega\mid f(\omega)\bullet a\}$
\end_inset
.
@@ -1554,7 +1554,7 @@ Sea
\end_inset
y
-\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$
+\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega)\mid h\geq0\}$
\end_inset
, llamamos
@@ -1719,7 +1719,7 @@ Para
medible, se define
\begin_inset Formula
\[
-\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
+\int f\,d\mu:=\sup\left\{ \int s\,d\mu\mid s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
\]
\end_inset
@@ -2236,7 +2236,7 @@ Una función medible
\end_inset
, si y sólo si
-\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$
+\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}\mid \Omega\rightarrow[-\infty,+\infty]$
\end_inset
son integrables, y definimos
@@ -3315,11 +3315,11 @@ Demostración:
\end_inset
es continua, y como
-\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$
+\begin_inset Formula $\delta:=\min\{d(x,K)\mid x\notin A\}>0$
\end_inset
,
-\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$
+\begin_inset Formula $A_{0}:=\{x\mid d(x,K)<\frac{\delta}{2}\}$
\end_inset
es un abierto acotado con
@@ -3328,7 +3328,7 @@ Demostración:
.
Tomando
-\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$
+\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x\mid d(x,K)\geq\frac{\delta}{2}\}$
\end_inset
, podemos definir