aboutsummaryrefslogtreecommitdiff
path: root/graf/n4.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'graf/n4.lyx')
-rw-r--r--graf/n4.lyx22
1 files changed, 11 insertions, 11 deletions
diff --git a/graf/n4.lyx b/graf/n4.lyx
index 5334582..3506c7c 100644
--- a/graf/n4.lyx
+++ b/graf/n4.lyx
@@ -90,7 +90,7 @@ Dada una red
\end_inset
y un camino
-\begin_inset Formula $P:=v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$
+\begin_inset Formula $P\coloneqq v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$
\end_inset
en
@@ -198,7 +198,7 @@ Como
teorema
\series default
, sean
-\begin_inset Formula $(V:=\{1,\dots,n\},E,\ell)$
+\begin_inset Formula $(V\coloneqq \{1,\dots,n\},E,\ell)$
\end_inset
una red conexa,
@@ -311,7 +311,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $P:=si_{1}\cdots i_{k}$
+\begin_inset Formula $P\coloneqq si_{1}\cdots i_{k}$
\end_inset
un camino, y queremos ver que
@@ -403,7 +403,7 @@ Si
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $P:=st_{1}\cdots t_{p}j$
+\begin_inset Formula $P\coloneqq st_{1}\cdots t_{p}j$
\end_inset
un camino de
@@ -423,11 +423,11 @@ Sean
\end_inset
y
-\begin_inset Formula $t_{k:=i+1},\dots,t_{p},j\in R$
+\begin_inset Formula $t_{k\coloneqq i+1},\dots,t_{p},j\in R$
\end_inset
, entonces
-\begin_inset Formula $P':=st_{1}\cdots t_{i}t_{k}$
+\begin_inset Formula $P'\coloneqq st_{1}\cdots t_{i}t_{k}$
\end_inset
cumple
@@ -1761,7 +1761,7 @@ Si
\end_inset
tal que
-\begin_inset Formula $G_{i}:=(V,E_{i}):=G+\{e_{1},\dots,e_{i}\}$
+\begin_inset Formula $G_{i}\coloneqq (V,E_{i})\coloneqq G+\{e_{1},\dots,e_{i}\}$
\end_inset
es hamiltoniano si y sólo si
@@ -1769,7 +1769,7 @@ Si
\end_inset
, por lo que existe un camino hamiltoniano
-\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}:=v)$
+\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}\coloneqq v)$
\end_inset
en
@@ -1777,16 +1777,16 @@ Si
\end_inset
, con
-\begin_inset Formula $n:=|V|$
+\begin_inset Formula $n\coloneqq |V|$
\end_inset
.
Sean ahora
-\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$
+\begin_inset Formula $X\coloneqq \{i\in\{2,\dots,n-2\}\mid(u_{i},v)\in E_{k}\}$
\end_inset
e
-\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$
+\begin_inset Formula $Y\coloneqq \{i\in\{2,\dots,n-2\}\mid(u_{i+1},u)\in E_{k}\}$
\end_inset
, se tiene