diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /graf/n4.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'graf/n4.lyx')
| -rw-r--r-- | graf/n4.lyx | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/graf/n4.lyx b/graf/n4.lyx index 5334582..3506c7c 100644 --- a/graf/n4.lyx +++ b/graf/n4.lyx @@ -90,7 +90,7 @@ Dada una red \end_inset y un camino -\begin_inset Formula $P:=v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$ +\begin_inset Formula $P\coloneqq v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$ \end_inset en @@ -198,7 +198,7 @@ Como teorema \series default , sean -\begin_inset Formula $(V:=\{1,\dots,n\},E,\ell)$ +\begin_inset Formula $(V\coloneqq \{1,\dots,n\},E,\ell)$ \end_inset una red conexa, @@ -311,7 +311,7 @@ status open \end_inset Sea -\begin_inset Formula $P:=si_{1}\cdots i_{k}$ +\begin_inset Formula $P\coloneqq si_{1}\cdots i_{k}$ \end_inset un camino, y queremos ver que @@ -403,7 +403,7 @@ Si \begin_deeper \begin_layout Standard Sean -\begin_inset Formula $P:=st_{1}\cdots t_{p}j$ +\begin_inset Formula $P\coloneqq st_{1}\cdots t_{p}j$ \end_inset un camino de @@ -423,11 +423,11 @@ Sean \end_inset y -\begin_inset Formula $t_{k:=i+1},\dots,t_{p},j\in R$ +\begin_inset Formula $t_{k\coloneqq i+1},\dots,t_{p},j\in R$ \end_inset , entonces -\begin_inset Formula $P':=st_{1}\cdots t_{i}t_{k}$ +\begin_inset Formula $P'\coloneqq st_{1}\cdots t_{i}t_{k}$ \end_inset cumple @@ -1761,7 +1761,7 @@ Si \end_inset tal que -\begin_inset Formula $G_{i}:=(V,E_{i}):=G+\{e_{1},\dots,e_{i}\}$ +\begin_inset Formula $G_{i}\coloneqq (V,E_{i})\coloneqq G+\{e_{1},\dots,e_{i}\}$ \end_inset es hamiltoniano si y sólo si @@ -1769,7 +1769,7 @@ Si \end_inset , por lo que existe un camino hamiltoniano -\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}:=v)$ +\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}\coloneqq v)$ \end_inset en @@ -1777,16 +1777,16 @@ Si \end_inset , con -\begin_inset Formula $n:=|V|$ +\begin_inset Formula $n\coloneqq |V|$ \end_inset . Sean ahora -\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$ +\begin_inset Formula $X\coloneqq \{i\in\{2,\dots,n-2\}\mid(u_{i},v)\in E_{k}\}$ \end_inset e -\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$ +\begin_inset Formula $Y\coloneqq \{i\in\{2,\dots,n-2\}\mid(u_{i+1},u)\in E_{k}\}$ \end_inset , se tiene |
