diff options
Diffstat (limited to 'graf/n5.lyx')
| -rw-r--r-- | graf/n5.lyx | 40 |
1 files changed, 20 insertions, 20 deletions
diff --git a/graf/n5.lyx b/graf/n5.lyx index 4ae5cf7..5914553 100644 --- a/graf/n5.lyx +++ b/graf/n5.lyx @@ -447,7 +447,7 @@ Sea \end_inset la partición, definimos -\begin_inset Formula $f(v):=0$ +\begin_inset Formula $f(v)\coloneqq 0$ \end_inset para @@ -455,7 +455,7 @@ Sea \end_inset y -\begin_inset Formula $f(v):=1$ +\begin_inset Formula $f(v)\coloneqq 1$ \end_inset para @@ -502,7 +502,7 @@ Se tiene \end_inset dada por -\begin_inset Formula $f(v):=[n(v)]_{2}$ +\begin_inset Formula $f(v)\coloneqq [n(v)]_{2}$ \end_inset es una coloración de @@ -556,7 +556,7 @@ ciclo \begin_deeper \begin_layout Standard Como -\begin_inset Formula $C_{n}:=(V:=\{0,\dots,n-1\},\{\{i,[i+1]_{n}\}\}_{i\in V})$ +\begin_inset Formula $C_{n}\coloneqq (V\coloneqq \{0,\dots,n-1\},\{\{i,[i+1]_{n}\}\}_{i\in V})$ \end_inset tiene ejes, @@ -614,7 +614,7 @@ Como \end_inset , y tomamos -\begin_inset Formula $f(i):=[i]_{2}$ +\begin_inset Formula $f(i)\coloneqq [i]_{2}$ \end_inset para @@ -622,7 +622,7 @@ Como \end_inset y -\begin_inset Formula $f(0):=2$ +\begin_inset Formula $f(0)\coloneqq 2$ \end_inset . @@ -711,7 +711,7 @@ Si \begin_deeper \begin_layout Standard Sean -\begin_inset Formula $k:=\chi(G-v)$ +\begin_inset Formula $k\coloneqq \chi(G-v)$ \end_inset y @@ -735,7 +735,7 @@ Sean \end_inset dada por -\begin_inset Formula $g(i):=f(i)$ +\begin_inset Formula $g(i)\coloneqq f(i)$ \end_inset para @@ -743,7 +743,7 @@ Sean \end_inset y -\begin_inset Formula $g(v):=k+1$ +\begin_inset Formula $g(v)\coloneqq k+1$ \end_inset es una @@ -1124,7 +1124,7 @@ Si todos los vértices de \end_inset con -\begin_inset Formula $\chi(H_{0}:=G_{0}-e_{1})=\chi(G_{0})$ +\begin_inset Formula $\chi(H_{0}\coloneqq G_{0}-e_{1})=\chi(G_{0})$ \end_inset . @@ -1172,7 +1172,7 @@ teorema Demostración: \series default Sea -\begin_inset Formula $k:=\chi(G)$ +\begin_inset Formula $k\coloneqq \chi(G)$ \end_inset y supongamos @@ -1308,11 +1308,11 @@ Si \end_inset y -\begin_inset Formula $e:=(u,v)$ +\begin_inset Formula $e\coloneqq (u,v)$ \end_inset , llamamos -\begin_inset Formula $G+e:=(V,E\cup\{e\})$ +\begin_inset Formula $G+e\coloneqq (V,E\cup\{e\})$ \end_inset , y si @@ -1357,7 +1357,7 @@ Teorema de reducción: Demostración: \series default Sea -\begin_inset Formula $(u,v):=e$ +\begin_inset Formula $(u,v)\coloneqq e$ \end_inset , las coloraciones @@ -1377,7 +1377,7 @@ Demostración: \end_inset haciendo -\begin_inset Formula $f(*):=f(u)=f(v)$ +\begin_inset Formula $f(*)\coloneqq f(u)=f(v)$ \end_inset , y las coloraciones @@ -1576,7 +1576,7 @@ planar \end_inset tales que, para -\begin_inset Formula $e:=(u,v)\in E$ +\begin_inset Formula $e\coloneqq (u,v)\in E$ \end_inset , @@ -1663,11 +1663,11 @@ estrella \end_inset , llamamos -\begin_inset Formula $f(v_{0}):=0$ +\begin_inset Formula $f(v_{0})\coloneqq 0$ \end_inset , -\begin_inset Formula $f(v_{i}):=(\cos i/n,\sin i/n)$ +\begin_inset Formula $f(v_{i})\coloneqq (\cos i/n,\sin i/n)$ \end_inset para @@ -1675,7 +1675,7 @@ estrella \end_inset y -\begin_inset Formula $g(v_{0},v_{i})(t):=tv_{i}$ +\begin_inset Formula $g(v_{0},v_{i})(t)\coloneqq tv_{i}$ \end_inset . @@ -1915,7 +1915,7 @@ Demostración: \end_inset y -\begin_inset Formula $c:=|F|$ +\begin_inset Formula $c\coloneqq |F|$ \end_inset , como toda |
