aboutsummaryrefslogtreecommitdiff
path: root/graf/n5.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /graf/n5.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'graf/n5.lyx')
-rw-r--r--graf/n5.lyx40
1 files changed, 20 insertions, 20 deletions
diff --git a/graf/n5.lyx b/graf/n5.lyx
index 4ae5cf7..5914553 100644
--- a/graf/n5.lyx
+++ b/graf/n5.lyx
@@ -447,7 +447,7 @@ Sea
\end_inset
la partición, definimos
-\begin_inset Formula $f(v):=0$
+\begin_inset Formula $f(v)\coloneqq 0$
\end_inset
para
@@ -455,7 +455,7 @@ Sea
\end_inset
y
-\begin_inset Formula $f(v):=1$
+\begin_inset Formula $f(v)\coloneqq 1$
\end_inset
para
@@ -502,7 +502,7 @@ Se tiene
\end_inset
dada por
-\begin_inset Formula $f(v):=[n(v)]_{2}$
+\begin_inset Formula $f(v)\coloneqq [n(v)]_{2}$
\end_inset
es una coloración de
@@ -556,7 +556,7 @@ ciclo
\begin_deeper
\begin_layout Standard
Como
-\begin_inset Formula $C_{n}:=(V:=\{0,\dots,n-1\},\{\{i,[i+1]_{n}\}\}_{i\in V})$
+\begin_inset Formula $C_{n}\coloneqq (V\coloneqq \{0,\dots,n-1\},\{\{i,[i+1]_{n}\}\}_{i\in V})$
\end_inset
tiene ejes,
@@ -614,7 +614,7 @@ Como
\end_inset
, y tomamos
-\begin_inset Formula $f(i):=[i]_{2}$
+\begin_inset Formula $f(i)\coloneqq [i]_{2}$
\end_inset
para
@@ -622,7 +622,7 @@ Como
\end_inset
y
-\begin_inset Formula $f(0):=2$
+\begin_inset Formula $f(0)\coloneqq 2$
\end_inset
.
@@ -711,7 +711,7 @@ Si
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $k:=\chi(G-v)$
+\begin_inset Formula $k\coloneqq \chi(G-v)$
\end_inset
y
@@ -735,7 +735,7 @@ Sean
\end_inset
dada por
-\begin_inset Formula $g(i):=f(i)$
+\begin_inset Formula $g(i)\coloneqq f(i)$
\end_inset
para
@@ -743,7 +743,7 @@ Sean
\end_inset
y
-\begin_inset Formula $g(v):=k+1$
+\begin_inset Formula $g(v)\coloneqq k+1$
\end_inset
es una
@@ -1124,7 +1124,7 @@ Si todos los vértices de
\end_inset
con
-\begin_inset Formula $\chi(H_{0}:=G_{0}-e_{1})=\chi(G_{0})$
+\begin_inset Formula $\chi(H_{0}\coloneqq G_{0}-e_{1})=\chi(G_{0})$
\end_inset
.
@@ -1172,7 +1172,7 @@ teorema
Demostración:
\series default
Sea
-\begin_inset Formula $k:=\chi(G)$
+\begin_inset Formula $k\coloneqq \chi(G)$
\end_inset
y supongamos
@@ -1308,11 +1308,11 @@ Si
\end_inset
y
-\begin_inset Formula $e:=(u,v)$
+\begin_inset Formula $e\coloneqq (u,v)$
\end_inset
, llamamos
-\begin_inset Formula $G+e:=(V,E\cup\{e\})$
+\begin_inset Formula $G+e\coloneqq (V,E\cup\{e\})$
\end_inset
, y si
@@ -1357,7 +1357,7 @@ Teorema de reducción:
Demostración:
\series default
Sea
-\begin_inset Formula $(u,v):=e$
+\begin_inset Formula $(u,v)\coloneqq e$
\end_inset
, las coloraciones
@@ -1377,7 +1377,7 @@ Demostración:
\end_inset
haciendo
-\begin_inset Formula $f(*):=f(u)=f(v)$
+\begin_inset Formula $f(*)\coloneqq f(u)=f(v)$
\end_inset
, y las coloraciones
@@ -1576,7 +1576,7 @@ planar
\end_inset
tales que, para
-\begin_inset Formula $e:=(u,v)\in E$
+\begin_inset Formula $e\coloneqq (u,v)\in E$
\end_inset
,
@@ -1663,11 +1663,11 @@ estrella
\end_inset
, llamamos
-\begin_inset Formula $f(v_{0}):=0$
+\begin_inset Formula $f(v_{0})\coloneqq 0$
\end_inset
,
-\begin_inset Formula $f(v_{i}):=(\cos i/n,\sin i/n)$
+\begin_inset Formula $f(v_{i})\coloneqq (\cos i/n,\sin i/n)$
\end_inset
para
@@ -1675,7 +1675,7 @@ estrella
\end_inset
y
-\begin_inset Formula $g(v_{0},v_{i})(t):=tv_{i}$
+\begin_inset Formula $g(v_{0},v_{i})(t)\coloneqq tv_{i}$
\end_inset
.
@@ -1915,7 +1915,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $c:=|F|$
+\begin_inset Formula $c\coloneqq |F|$
\end_inset
, como toda