aboutsummaryrefslogtreecommitdiff
path: root/graf/n6.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'graf/n6.lyx')
-rw-r--r--graf/n6.lyx28
1 files changed, 14 insertions, 14 deletions
diff --git a/graf/n6.lyx b/graf/n6.lyx
index e296d0b..6bf574a 100644
--- a/graf/n6.lyx
+++ b/graf/n6.lyx
@@ -222,11 +222,11 @@ teorema
\end_inset
,
-\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}:Ax+Gy\leq b\}$
+\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$
\end_inset
y
-\begin_inset Formula $S:=\{[x,y]\in P:x\in\mathbb{Z}^{p}\}$
+\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$
\end_inset
, existen
@@ -242,7 +242,7 @@ teorema
\end_inset
tales que
-\begin_inset Formula $\text{ec}S=\{[x,y]:A'x+G'y\leq b'\}$
+\begin_inset Formula $\text{ec}S=\{[x,y]\mid A'x+G'y\leq b'\}$
\end_inset
.
@@ -253,11 +253,11 @@ teorema
Demostración:
\series default
Sean
-\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}:y\leq\sqrt{2}x,x\geq0,y\geq0\}$
+\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$
\end_inset
y
-\begin_inset Formula $C:=\{(x,y):y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
+\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
\end_inset
.
@@ -406,7 +406,7 @@ Sean
\end_inset
y
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:Ax\leq b\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$
\end_inset
, si
@@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:
\end_inset
,
-\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}:Ax=b,x\geq0\}$
+\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$
\end_inset
es entero.
@@ -913,7 +913,7 @@ Teorema de Hoffman-Kruskal:
\end_inset
, el poliedro
-\begin_inset Formula $\{x\in\mathbb{R}^{n}:Ax\leq b,x\geq0\}$
+\begin_inset Formula $\{x\in\mathbb{R}^{n}\mid Ax\leq b,x\geq0\}$
\end_inset
es entero.
@@ -978,7 +978,7 @@ Dada una submatriz
\end_inset
es unimodular, con lo que
-\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}:Ax+Iy=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$
\end_inset
es entero.
@@ -1003,7 +1003,7 @@ Dada una submatriz
\end_inset
es
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
\end_inset
.
@@ -1069,11 +1069,11 @@ Sean
\end_inset
,
-\begin_inset Formula $P:=\{x:Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$
\end_inset
,
-\begin_inset Formula $Q:=\{[x,y]:Ax+y=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$
\end_inset
y
@@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la
\begin_layout Standard
Para el problema del viajante de comercio sobre una red completa
-\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E:=\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
+\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
\end_inset
, existen varias formulaciones:
@@ -1783,7 +1783,7 @@ es
& \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\
& & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 & & \forall i\\
& & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 & & \forall i\\
- & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\
+ & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\
& & x_{ij} & \in\{0,1\} & & \forall i,j\\
& & u_{i} & \in\mathbb{R}^{>0} & & \forall i
\end{alignat*}