diff options
Diffstat (limited to 'tem')
| -rw-r--r-- | tem/n1.lyx | 8 | ||||
| -rw-r--r-- | tem/n2.lyx | 10 | ||||
| -rw-r--r-- | tem/n3.lyx | 2 | ||||
| -rw-r--r-- | tem/n4.lyx | 2 |
4 files changed, 11 insertions, 11 deletions
@@ -406,7 +406,7 @@ La topología cofinita \series default : -\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$ +\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X\mid X\backslash A\text{ es finito}\}$ \end_inset . @@ -1381,7 +1381,7 @@ círculo \end_inset es el conjunto -\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$ +\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$ \end_inset . @@ -1402,7 +1402,7 @@ bola abierta \end_inset es el conjunto -\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)<r\}$ +\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$ \end_inset , y la @@ -1422,7 +1422,7 @@ bola cerrada \end_inset es el conjunto -\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X:d(p,x)\leq r\}$ +\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$ \end_inset . @@ -110,7 +110,7 @@ adherencia denota \begin_inset Formula \[ -\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\} +\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}\mid S\subseteq C\} \] \end_inset @@ -709,7 +709,7 @@ interior , y se denota \begin_inset Formula \[ -\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\} +\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}\mid A\subseteq S\} \] \end_inset @@ -1160,7 +1160,7 @@ Sea \end_inset , entonces -\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$ \end_inset . @@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico \end_inset si y sólo si -\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ +\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$ \end_inset , y @@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico \end_inset si y sólo si -\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$ +\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$ \end_inset . @@ -245,7 +245,7 @@ De aquí que Demostración: \series default Tomando -\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$ +\begin_inset Formula ${\cal B}(p)=\{B(p;\delta)\mid \delta>0\}$ \end_inset y @@ -369,7 +369,7 @@ Demostración: \end_inset y definimos -\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ +\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ \end_inset . |
