aboutsummaryrefslogtreecommitdiff
path: root/tem
diff options
context:
space:
mode:
Diffstat (limited to 'tem')
-rw-r--r--tem/n1.lyx8
-rw-r--r--tem/n2.lyx10
-rw-r--r--tem/n3.lyx2
-rw-r--r--tem/n4.lyx2
4 files changed, 11 insertions, 11 deletions
diff --git a/tem/n1.lyx b/tem/n1.lyx
index 63ebf66..39659d7 100644
--- a/tem/n1.lyx
+++ b/tem/n1.lyx
@@ -406,7 +406,7 @@ La
topología cofinita
\series default
:
-\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$
+\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X\mid X\backslash A\text{ es finito}\}$
\end_inset
.
@@ -1381,7 +1381,7 @@ círculo
\end_inset
es el conjunto
-\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$
+\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$
\end_inset
.
@@ -1402,7 +1402,7 @@ bola abierta
\end_inset
es el conjunto
-\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)<r\}$
+\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$
\end_inset
, y la
@@ -1422,7 +1422,7 @@ bola cerrada
\end_inset
es el conjunto
-\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X:d(p,x)\leq r\}$
+\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$
\end_inset
.
diff --git a/tem/n2.lyx b/tem/n2.lyx
index 02c4d59..912a7be 100644
--- a/tem/n2.lyx
+++ b/tem/n2.lyx
@@ -110,7 +110,7 @@ adherencia
denota
\begin_inset Formula
\[
-\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}:S\subseteq C\}
+\overline{S}:=\text{cl}(S):=\text{ad}(S):=\bigcap\{C\in{\cal C}_{{\cal T}}\mid S\subseteq C\}
\]
\end_inset
@@ -709,7 +709,7 @@ interior
, y se denota
\begin_inset Formula
\[
-\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}:A\subseteq S\}
+\mathring{S}:=\text{int}S:=\bigcup\{A\in{\cal T}\mid A\subseteq S\}
\]
\end_inset
@@ -1160,7 +1160,7 @@ Sea
\end_inset
, entonces
-\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
+\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
\end_inset
.
@@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
+\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
\end_inset
, y
@@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$
+\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$
\end_inset
.
diff --git a/tem/n3.lyx b/tem/n3.lyx
index 245e95c..35cc0dc 100644
--- a/tem/n3.lyx
+++ b/tem/n3.lyx
@@ -245,7 +245,7 @@ De aquí que
Demostración:
\series default
Tomando
-\begin_inset Formula ${\cal B}(p)=\{B(p;\delta):\delta>0\}$
+\begin_inset Formula ${\cal B}(p)=\{B(p;\delta)\mid \delta>0\}$
\end_inset
y
diff --git a/tem/n4.lyx b/tem/n4.lyx
index 574a4a5..2f3a2e7 100644
--- a/tem/n4.lyx
+++ b/tem/n4.lyx
@@ -369,7 +369,7 @@ Demostración:
\end_inset
y definimos
-\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
+\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
\end_inset
.