aboutsummaryrefslogtreecommitdiff
path: root/ts/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ts/n1.lyx')
-rw-r--r--ts/n1.lyx26
1 files changed, 13 insertions, 13 deletions
diff --git a/ts/n1.lyx b/ts/n1.lyx
index 8874cc3..4936758 100644
--- a/ts/n1.lyx
+++ b/ts/n1.lyx
@@ -268,7 +268,7 @@ entorno
\end_inset
es un elemento de
-\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$
+\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$
\end_inset
.
@@ -459,7 +459,7 @@ abierta
a
\begin_inset Formula
\[
-B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}.
+B_{d}(x,\delta):=\{y\in X\mid d(x,y)<\varepsilon\}.
\]
\end_inset
@@ -485,7 +485,7 @@ inducida
\end_inset
a la topología
-\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$
+\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$
\end_inset
.
@@ -578,7 +578,7 @@ La
-esfera
\series default
,
-\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
+\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$
\end_inset
.
@@ -630,7 +630,7 @@ El
cilindro
\series default
,
-\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$
+\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$
\end_inset
, cono de rotación sobre el eje
@@ -666,7 +666,7 @@ El
toro
\series default
,
-\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
+\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$
\end_inset
, cono de rotación sobre el eje
@@ -674,7 +674,7 @@ toro
\end_inset
de
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}$
\end_inset
.
@@ -695,7 +695,7 @@ status open
\end_inset
Tenemos
-\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
+\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$
\end_inset
, luego el cono de rotación es
@@ -1056,7 +1056,7 @@ Como los abiertos en
\end_inset
,
-\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$
+\begin_inset Formula $s^{-1}((a,b))=\{(x,y)\mid a<s(x,y)=x+y<b\}=\{(x,y)\mid a-x<y<b-x\}$
\end_inset
.
@@ -1135,7 +1135,7 @@ Dado
\end_inset
, queremos ver que
-\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$
+\begin_inset Formula $p^{-1}((a,b))=\{(x,y)\mid a<p(x,y)=xy<b\}$
\end_inset
es abierto.
@@ -1217,7 +1217,7 @@ Basta ver que, dada una bola
, su inversa es un abierto.
Tenemos
-\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$
+\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$
\end_inset
, pero
@@ -2043,7 +2043,7 @@ topología generada
\end_inset
a
-\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$
+\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$
\end_inset
, y se tiene que
@@ -2456,7 +2456,7 @@ Dada una base
\end_inset
numerable,
-\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$
+\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$
\end_inset
es base de entornos de