diff options
Diffstat (limited to 'ts/n3.lyx')
| -rw-r--r-- | ts/n3.lyx | 22 |
1 files changed, 11 insertions, 11 deletions
@@ -309,7 +309,7 @@ Sean status open \begin_layout Plain Layout -\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$ +\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$ \end_inset y @@ -736,7 +736,7 @@ unión disjunta \end_inset son espacios topológicos, definimos la topología -\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$ +\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$ \end_inset . @@ -934,7 +934,7 @@ Sea \end_inset , -\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$ +\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$ \end_inset lo es de @@ -947,7 +947,7 @@ Sea . Del mismo modo -\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$ +\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$ \end_inset admite un subrecubrimiento finito @@ -1122,11 +1122,11 @@ Sean \end_inset disjuntos, y basta tomar -\begin_inset Formula $\{x:(x,0)\in U\}$ +\begin_inset Formula $\{x\mid (x,0)\in U\}$ \end_inset y -\begin_inset Formula $\{x:(x,0)\in V\}$ +\begin_inset Formula $\{x\mid (x,0)\in V\}$ \end_inset . @@ -1449,7 +1449,7 @@ Dado un abierto \end_inset , -\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$ +\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$ \end_inset , que es abierto por la hipótesis. @@ -1479,7 +1479,7 @@ Dado un elemento básico \end_inset , -\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$ +\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$ \end_inset , que es abierto. @@ -2269,7 +2269,7 @@ Sean \end_inset , sea -\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$ +\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$ \end_inset , @@ -2360,7 +2360,7 @@ topología cociente \end_inset a -\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$ +\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$ \end_inset , donde @@ -2832,7 +2832,7 @@ Si \end_inset es Hausdorff si y sólo si -\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$ +\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$ \end_inset es cerrado en |
