aboutsummaryrefslogtreecommitdiff
path: root/ts/n6.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ts/n6.lyx')
-rw-r--r--ts/n6.lyx62
1 files changed, 31 insertions, 31 deletions
diff --git a/ts/n6.lyx b/ts/n6.lyx
index c61ae70..2adbde5 100644
--- a/ts/n6.lyx
+++ b/ts/n6.lyx
@@ -317,7 +317,7 @@ Sea
.
Sea
-\begin_inset Formula $v:=t_{1}v_{1}+\dots+t_{k}v_{k}\in[v_{1},\dots,v_{k}]$
+\begin_inset Formula $v\coloneqq t_{1}v_{1}+\dots+t_{k}v_{k}\in[v_{1},\dots,v_{k}]$
\end_inset
.
@@ -345,7 +345,7 @@ Sea
.
En otro caso,
-\begin_inset Formula $w:=\frac{t_{1}}{1-t_{k}}v_{1}+\dots+\frac{t_{k-1}}{1-t_{k}}v_{k-1}\in\text{conv}\{v_{1},\dots,v_{k-1}\}\subseteq\text{conv}\{v_{1},\dots,v_{k}\}\subseteq C$
+\begin_inset Formula $w\coloneqq \frac{t_{1}}{1-t_{k}}v_{1}+\dots+\frac{t_{k-1}}{1-t_{k}}v_{k-1}\in\text{conv}\{v_{1},\dots,v_{k-1}\}\subseteq\text{conv}\{v_{1},\dots,v_{k}\}\subseteq C$
\end_inset
, luego
@@ -385,12 +385,12 @@ símplice
vértices
\series default
, en posición general,
-\begin_inset Formula $[v_{0},\dots,v_{k}]:=\text{conv}\{v_{0},\dots,v_{k}\}$
+\begin_inset Formula $[v_{0},\dots,v_{k}]\coloneqq \text{conv}\{v_{0},\dots,v_{k}\}$
\end_inset
.
Si
-\begin_inset Formula $v:=t_{0}v_{0}+\dots+t_{k}v_{k}\in[v_{0},\dots,v_{k}]$
+\begin_inset Formula $v\coloneqq t_{0}v_{0}+\dots+t_{k}v_{k}\in[v_{0},\dots,v_{k}]$
\end_inset
con cada
@@ -418,7 +418,7 @@ coordinadas baricéntricas
\begin_layout Standard
Si
-\begin_inset Formula $W:=\{v_{0},\dots,v_{k}\}$
+\begin_inset Formula $W\coloneqq \{v_{0},\dots,v_{k}\}$
\end_inset
determina un
@@ -648,7 +648,7 @@ característica de Euler
\end_inset
es
-\begin_inset Formula $\chi(T):=i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$
+\begin_inset Formula $\chi(T)\coloneqq i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$
\end_inset
.
@@ -721,19 +721,19 @@ status open
\begin_layout Plain Layout
En efecto, sean
-\begin_inset Formula $a:=(0,0,1)$
+\begin_inset Formula $a\coloneqq (0,0,1)$
\end_inset
,
-\begin_inset Formula $b:=(0,1,-1)$
+\begin_inset Formula $b\coloneqq (0,1,-1)$
\end_inset
,
-\begin_inset Formula $c:=(-1,-1,-1)$
+\begin_inset Formula $c\coloneqq (-1,-1,-1)$
\end_inset
y
-\begin_inset Formula $d:=(1,-1,-1)$
+\begin_inset Formula $d\coloneqq (1,-1,-1)$
\end_inset
, entonces el complejo simplicial dado por
@@ -746,7 +746,7 @@ En efecto, sean
\end_inset
junto con el homeomorfismo
-\begin_inset Formula $h(x,y,z):=\frac{(x,y,z)}{|(x,y,z)|}$
+\begin_inset Formula $h(x,y,z)\coloneqq \frac{(x,y,z)}{|(x,y,z)|}$
\end_inset
forman una triangulación de
@@ -831,7 +831,7 @@ Presentaciones poligonales
\begin_layout Standard
Sea
-\begin_inset Formula $S:=\overline{B_{d_{1}}}(0;1)$
+\begin_inset Formula $S\coloneqq \overline{B_{d_{1}}}(0;1)$
\end_inset
.
@@ -927,7 +927,7 @@ Una
presentación poligonal
\series default
es una expresión de la forma
-\begin_inset Formula ${\cal P}:=\langle S\mid W_{1},\dots,W_{k}\rangle$
+\begin_inset Formula ${\cal P}\coloneqq \langle S\mid W_{1},\dots,W_{k}\rangle$
\end_inset
, donde
@@ -995,7 +995,7 @@ Para cada palabra
\end_inset
, sea
-\begin_inset Formula $n_{i}:=|W_{i}|$
+\begin_inset Formula $n_{i}\coloneqq |W_{i}|$
\end_inset
.
@@ -1028,7 +1028,7 @@ Si
\end_inset
dados por
-\begin_inset Formula $a_{ij}:=[v_{ij},v_{i(j+1)}]$
+\begin_inset Formula $a_{ij}\coloneqq [v_{ij},v_{i(j+1)}]$
\end_inset
entendiendo
@@ -1036,7 +1036,7 @@ Si
\end_inset
, y el polígono
-\begin_inset Formula $P_{i}:=\text{conv}\{v_{i1},\dots,v_{in_{i}}\}$
+\begin_inset Formula $P_{i}\coloneqq \text{conv}\{v_{i1},\dots,v_{in_{i}}\}$
\end_inset
.
@@ -1076,7 +1076,7 @@ Si
\end_inset
disjuntos (salvo en los puntos inicial y final), y
-\begin_inset Formula $P_{i}:=\text{conv}\{a_{ij}(s)\}_{s\in[0,1]}^{j\in\{1,2\}}$
+\begin_inset Formula $P_{i}\coloneqq \text{conv}\{a_{ij}(s)\}_{s\in[0,1]}^{j\in\{1,2\}}$
\end_inset
.
@@ -1090,7 +1090,7 @@ Sea
.
Tomamos el espacio topológico
-\begin_inset Formula $X:=(P_{1}\amalg\dots\amalg P_{k})/\sim$
+\begin_inset Formula $X\coloneqq (P_{1}\amalg\dots\amalg P_{k})/\sim$
\end_inset
, donde
@@ -1233,7 +1233,7 @@ aristas
\end_inset
son regiones poligonales,
-\begin_inset Formula $P:=P_{1}\amalg\dots\amalg P_{k}$
+\begin_inset Formula $P\coloneqq P_{1}\amalg\dots\amalg P_{k}$
\end_inset
y
@@ -1716,39 +1716,39 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $a_{0}:=(0,1,0)$
+\begin_inset Formula $a_{0}\coloneqq (0,1,0)$
\end_inset
,
-\begin_inset Formula $a_{1}:=(0,3,1)$
+\begin_inset Formula $a_{1}\coloneqq (0,3,1)$
\end_inset
,
-\begin_inset Formula $a_{2}:=(0,3,-1)$
+\begin_inset Formula $a_{2}\coloneqq (0,3,-1)$
\end_inset
,
-\begin_inset Formula $b_{0}:=(-1,-1,0)$
+\begin_inset Formula $b_{0}\coloneqq (-1,-1,0)$
\end_inset
,
-\begin_inset Formula $b_{1}:=(-3,-3,1)$
+\begin_inset Formula $b_{1}\coloneqq (-3,-3,1)$
\end_inset
,
-\begin_inset Formula $b_{2}:=(-3,-3,-1)$
+\begin_inset Formula $b_{2}\coloneqq (-3,-3,-1)$
\end_inset
,
-\begin_inset Formula $c_{0}:=(1,-1,0)$
+\begin_inset Formula $c_{0}\coloneqq (1,-1,0)$
\end_inset
,
-\begin_inset Formula $c_{1}:=(3,-3,1)$
+\begin_inset Formula $c_{1}\coloneqq (3,-3,1)$
\end_inset
y
-\begin_inset Formula $c_{2}:=(3,-3,-1)$
+\begin_inset Formula $c_{2}\coloneqq (3,-3,-1)$
\end_inset
.
@@ -1764,7 +1764,7 @@ Sean
y cuyas aristas y vértices son los subsímplices de estas caras.
Entonces, si
-\begin_inset Formula $r:=\frac{29}{20}$
+\begin_inset Formula $r\coloneqq \frac{29}{20}$
\end_inset
, la circunferencia
@@ -1794,11 +1794,11 @@ y cuyas aristas y vértices son los subsímplices de estas caras.
.
Entonces, si
-\begin_inset Formula $p(x,y):=r(\frac{x}{\sqrt{x^{2}+y^{2}}},\frac{y}{\sqrt{x^{2}+y^{2}}},0)$
+\begin_inset Formula $p(x,y)\coloneqq r(\frac{x}{\sqrt{x^{2}+y^{2}}},\frac{y}{\sqrt{x^{2}+y^{2}}},0)$
\end_inset
, la función
-\begin_inset Formula $h(x,y,z):=r(x,y)+\frac{(x,y,z)-r(x,y)}{|(x,y,z)-r(x,y)|}$
+\begin_inset Formula $h(x,y,z)\coloneqq r(x,y)+\frac{(x,y,z)-r(x,y)}{|(x,y,z)-r(x,y)|}$
\end_inset
es un homeomorfismo del complejo al toro con circunferencia interior