diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ts/n6.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'ts/n6.lyx')
| -rw-r--r-- | ts/n6.lyx | 62 |
1 files changed, 31 insertions, 31 deletions
@@ -317,7 +317,7 @@ Sea . Sea -\begin_inset Formula $v:=t_{1}v_{1}+\dots+t_{k}v_{k}\in[v_{1},\dots,v_{k}]$ +\begin_inset Formula $v\coloneqq t_{1}v_{1}+\dots+t_{k}v_{k}\in[v_{1},\dots,v_{k}]$ \end_inset . @@ -345,7 +345,7 @@ Sea . En otro caso, -\begin_inset Formula $w:=\frac{t_{1}}{1-t_{k}}v_{1}+\dots+\frac{t_{k-1}}{1-t_{k}}v_{k-1}\in\text{conv}\{v_{1},\dots,v_{k-1}\}\subseteq\text{conv}\{v_{1},\dots,v_{k}\}\subseteq C$ +\begin_inset Formula $w\coloneqq \frac{t_{1}}{1-t_{k}}v_{1}+\dots+\frac{t_{k-1}}{1-t_{k}}v_{k-1}\in\text{conv}\{v_{1},\dots,v_{k-1}\}\subseteq\text{conv}\{v_{1},\dots,v_{k}\}\subseteq C$ \end_inset , luego @@ -385,12 +385,12 @@ símplice vértices \series default , en posición general, -\begin_inset Formula $[v_{0},\dots,v_{k}]:=\text{conv}\{v_{0},\dots,v_{k}\}$ +\begin_inset Formula $[v_{0},\dots,v_{k}]\coloneqq \text{conv}\{v_{0},\dots,v_{k}\}$ \end_inset . Si -\begin_inset Formula $v:=t_{0}v_{0}+\dots+t_{k}v_{k}\in[v_{0},\dots,v_{k}]$ +\begin_inset Formula $v\coloneqq t_{0}v_{0}+\dots+t_{k}v_{k}\in[v_{0},\dots,v_{k}]$ \end_inset con cada @@ -418,7 +418,7 @@ coordinadas baricéntricas \begin_layout Standard Si -\begin_inset Formula $W:=\{v_{0},\dots,v_{k}\}$ +\begin_inset Formula $W\coloneqq \{v_{0},\dots,v_{k}\}$ \end_inset determina un @@ -648,7 +648,7 @@ característica de Euler \end_inset es -\begin_inset Formula $\chi(T):=i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$ +\begin_inset Formula $\chi(T)\coloneqq i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$ \end_inset . @@ -721,19 +721,19 @@ status open \begin_layout Plain Layout En efecto, sean -\begin_inset Formula $a:=(0,0,1)$ +\begin_inset Formula $a\coloneqq (0,0,1)$ \end_inset , -\begin_inset Formula $b:=(0,1,-1)$ +\begin_inset Formula $b\coloneqq (0,1,-1)$ \end_inset , -\begin_inset Formula $c:=(-1,-1,-1)$ +\begin_inset Formula $c\coloneqq (-1,-1,-1)$ \end_inset y -\begin_inset Formula $d:=(1,-1,-1)$ +\begin_inset Formula $d\coloneqq (1,-1,-1)$ \end_inset , entonces el complejo simplicial dado por @@ -746,7 +746,7 @@ En efecto, sean \end_inset junto con el homeomorfismo -\begin_inset Formula $h(x,y,z):=\frac{(x,y,z)}{|(x,y,z)|}$ +\begin_inset Formula $h(x,y,z)\coloneqq \frac{(x,y,z)}{|(x,y,z)|}$ \end_inset forman una triangulación de @@ -831,7 +831,7 @@ Presentaciones poligonales \begin_layout Standard Sea -\begin_inset Formula $S:=\overline{B_{d_{1}}}(0;1)$ +\begin_inset Formula $S\coloneqq \overline{B_{d_{1}}}(0;1)$ \end_inset . @@ -927,7 +927,7 @@ Una presentación poligonal \series default es una expresión de la forma -\begin_inset Formula ${\cal P}:=\langle S\mid W_{1},\dots,W_{k}\rangle$ +\begin_inset Formula ${\cal P}\coloneqq \langle S\mid W_{1},\dots,W_{k}\rangle$ \end_inset , donde @@ -995,7 +995,7 @@ Para cada palabra \end_inset , sea -\begin_inset Formula $n_{i}:=|W_{i}|$ +\begin_inset Formula $n_{i}\coloneqq |W_{i}|$ \end_inset . @@ -1028,7 +1028,7 @@ Si \end_inset dados por -\begin_inset Formula $a_{ij}:=[v_{ij},v_{i(j+1)}]$ +\begin_inset Formula $a_{ij}\coloneqq [v_{ij},v_{i(j+1)}]$ \end_inset entendiendo @@ -1036,7 +1036,7 @@ Si \end_inset , y el polígono -\begin_inset Formula $P_{i}:=\text{conv}\{v_{i1},\dots,v_{in_{i}}\}$ +\begin_inset Formula $P_{i}\coloneqq \text{conv}\{v_{i1},\dots,v_{in_{i}}\}$ \end_inset . @@ -1076,7 +1076,7 @@ Si \end_inset disjuntos (salvo en los puntos inicial y final), y -\begin_inset Formula $P_{i}:=\text{conv}\{a_{ij}(s)\}_{s\in[0,1]}^{j\in\{1,2\}}$ +\begin_inset Formula $P_{i}\coloneqq \text{conv}\{a_{ij}(s)\}_{s\in[0,1]}^{j\in\{1,2\}}$ \end_inset . @@ -1090,7 +1090,7 @@ Sea . Tomamos el espacio topológico -\begin_inset Formula $X:=(P_{1}\amalg\dots\amalg P_{k})/\sim$ +\begin_inset Formula $X\coloneqq (P_{1}\amalg\dots\amalg P_{k})/\sim$ \end_inset , donde @@ -1233,7 +1233,7 @@ aristas \end_inset son regiones poligonales, -\begin_inset Formula $P:=P_{1}\amalg\dots\amalg P_{k}$ +\begin_inset Formula $P\coloneqq P_{1}\amalg\dots\amalg P_{k}$ \end_inset y @@ -1716,39 +1716,39 @@ status open \begin_layout Plain Layout Sean -\begin_inset Formula $a_{0}:=(0,1,0)$ +\begin_inset Formula $a_{0}\coloneqq (0,1,0)$ \end_inset , -\begin_inset Formula $a_{1}:=(0,3,1)$ +\begin_inset Formula $a_{1}\coloneqq (0,3,1)$ \end_inset , -\begin_inset Formula $a_{2}:=(0,3,-1)$ +\begin_inset Formula $a_{2}\coloneqq (0,3,-1)$ \end_inset , -\begin_inset Formula $b_{0}:=(-1,-1,0)$ +\begin_inset Formula $b_{0}\coloneqq (-1,-1,0)$ \end_inset , -\begin_inset Formula $b_{1}:=(-3,-3,1)$ +\begin_inset Formula $b_{1}\coloneqq (-3,-3,1)$ \end_inset , -\begin_inset Formula $b_{2}:=(-3,-3,-1)$ +\begin_inset Formula $b_{2}\coloneqq (-3,-3,-1)$ \end_inset , -\begin_inset Formula $c_{0}:=(1,-1,0)$ +\begin_inset Formula $c_{0}\coloneqq (1,-1,0)$ \end_inset , -\begin_inset Formula $c_{1}:=(3,-3,1)$ +\begin_inset Formula $c_{1}\coloneqq (3,-3,1)$ \end_inset y -\begin_inset Formula $c_{2}:=(3,-3,-1)$ +\begin_inset Formula $c_{2}\coloneqq (3,-3,-1)$ \end_inset . @@ -1764,7 +1764,7 @@ Sean y cuyas aristas y vértices son los subsímplices de estas caras. Entonces, si -\begin_inset Formula $r:=\frac{29}{20}$ +\begin_inset Formula $r\coloneqq \frac{29}{20}$ \end_inset , la circunferencia @@ -1794,11 +1794,11 @@ y cuyas aristas y vértices son los subsímplices de estas caras. . Entonces, si -\begin_inset Formula $p(x,y):=r(\frac{x}{\sqrt{x^{2}+y^{2}}},\frac{y}{\sqrt{x^{2}+y^{2}}},0)$ +\begin_inset Formula $p(x,y)\coloneqq r(\frac{x}{\sqrt{x^{2}+y^{2}}},\frac{y}{\sqrt{x^{2}+y^{2}}},0)$ \end_inset , la función -\begin_inset Formula $h(x,y,z):=r(x,y)+\frac{(x,y,z)-r(x,y)}{|(x,y,z)-r(x,y)|}$ +\begin_inset Formula $h(x,y,z)\coloneqq r(x,y)+\frac{(x,y,z)-r(x,y)}{|(x,y,z)-r(x,y)|}$ \end_inset es un homeomorfismo del complejo al toro con circunferencia interior |
