aboutsummaryrefslogtreecommitdiff
path: root/ggs/n7.lyx
blob: 309418df7583e246bbab73beddf43f143165c569 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input{../defs}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language spanish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style french
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header

\begin_body

\begin_layout Standard
Una 
\series bold
región
\series default
 de una superficie regular 
\begin_inset Formula $S$
\end_inset

 es un 
\begin_inset Formula $R\subseteq S$
\end_inset

 abierto, conexo y 
\series bold
relativamente compacto
\series default
, es decir, con clausura compacta.
 Si existe una parametrización 
\begin_inset Formula $(U,X)$
\end_inset

 de 
\begin_inset Formula $S$
\end_inset

 con 
\begin_inset Formula $R\subseteq X(U)$
\end_inset

 y 
\begin_inset Formula $f:R\to\mathbb{R}$
\end_inset

 es continua, la 
\series bold
integral
\series default
 de 
\begin_inset Formula $f$
\end_inset

 sobre 
\begin_inset Formula $R$
\end_inset

 es
\begin_inset Formula 
\[
\int_{R}f\,dS=\iint_{X^{-1}(R)}(f\circ X)\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert =\iint_{X^{-1}(R)}(f\circ X)\sqrt{EG-F^{2}}.
\]

\end_inset

Esta no depende de la parametrización.
 
\series bold
Demostración:
\series default
 Sean 
\begin_inset Formula $(U,X)$
\end_inset

 y 
\begin_inset Formula $(\overline{U},\overline{X})$
\end_inset

 parametrizaciones de 
\begin_inset Formula $S$
\end_inset

 con 
\begin_inset Formula $R\subseteq X(U)\cap\overline{X}(\overline{U})$
\end_inset

, 
\begin_inset Formula $h\coloneqq \overline{X}^{-1}\circ X$
\end_inset

 la reparametrización y 
\begin_inset Formula $h(u,v)=:(\overline{u}(u,v),\overline{v}(u,v))$
\end_inset

, de modo que 
\begin_inset Formula $X=\overline{X}\circ h$
\end_inset

, entonces
\begin_inset Formula 
\begin{align*}
\frac{\partial X}{\partial u} & =\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial u}+\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial u}, & \frac{\partial X}{\partial v} & =\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial v}+\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial v},
\end{align*}

\end_inset

con las derivadas de 
\begin_inset Formula $\overline{X}$
\end_inset

 evaluadas en 
\begin_inset Formula $h(u,v)$
\end_inset

 y el resto en 
\begin_inset Formula $(u,v)$
\end_inset

, luego
\begin_inset Formula 
\[
\left(\frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right)=\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial v}+\frac{\partial\overline{X}}{\partial\overline{v}}\frac{\partial\overline{v}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial\overline{u}}\frac{\partial\overline{u}}{\partial v}=\left(\frac{\partial\overline{u}}{\partial u}\frac{\partial\overline{v}}{\partial v}-\frac{\partial\overline{u}}{\partial v}\frac{\partial\overline{v}}{\partial u}\right)\left(\frac{\partial\overline{X}}{\partial\overline{u}}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\right),
\]

\end_inset

pero 
\begin_inset Formula $\frac{\partial\overline{u}}{\partial u}\frac{\partial\overline{v}}{\partial v}-\frac{\partial\overline{u}}{\partial v}\frac{\partial\overline{v}}{\partial u}=\det(Jh)$
\end_inset

, luego
\begin_inset Formula 
\begin{multline*}
\iint_{X^{-1}(R)}(f\circ X)\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert =\iint_{X^{-1}(R)}(f\circ X)|\det(Jh)|\left\Vert \frac{\partial\overline{X}}{\partial\overline{u}}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\right\Vert =\\
=\iint_{h(X^{-1}(R))=\overline{X}^{-1}(R)}(f\circ X)\left\Vert \frac{\partial\overline{X}}{\partial\overline{u}}\wedge\frac{\partial\overline{X}}{\partial\overline{v}}\right\Vert .
\end{multline*}

\end_inset


\end_layout

\begin_layout Standard
El 
\series bold
área
\series default
 de una región 
\begin_inset Formula $R$
\end_inset

 contenida en la imagen de una parametrización de 
\begin_inset Formula $S$
\end_inset

 es
\begin_inset Formula 
\[
A(R):=\int_{R}dS.
\]

\end_inset


\end_layout

\begin_layout Standard
Si 
\begin_inset Formula $R$
\end_inset

 no está contenida en la imagen de una parametrización, es posible extender
 las definiciones de área y de integral de una función con soporte compacto
 sobre 
\begin_inset Formula $R$
\end_inset

 usando particiones diferenciables de la unidad.
 
\end_layout

\begin_layout Standard
Dada una función 
\begin_inset Formula $\phi:S_{1}\to S_{2}$
\end_inset

 entre superficies regulares, definimos 
\begin_inset Formula $\det(d\phi):S_{1}\to\mathbb{R}$
\end_inset

 como 
\begin_inset Formula $\det(d\phi)(p)\coloneqq \det(J\phi_{p})$
\end_inset

.
 El 
\series bold
soporte
\series default
 de una función 
\begin_inset Formula $f:D\to\mathbb{R}$
\end_inset

 es 
\begin_inset Formula $\text{sop}f\coloneqq \overline{\{x\in D\mid f(x)\neq0\}}$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
Teorema del cambio de variable:
\series default
 Si 
\begin_inset Formula $\phi:S_{1}\to S_{2}$
\end_inset

 es un difeomorfismo entre superficies regulares conexas y orientadas y
 
\begin_inset Formula $f:S_{2}\to\mathbb{R}$
\end_inset

 es continua con soporte compacto, entonces
\begin_inset Formula 
\[
\int_{S_{2}}f\,dS_{2}=\int_{S_{1}}(f\circ\phi)|\det(d\phi)|dS_{1}=\pm\int_{S_{1}}(f\circ\phi)\det(d\phi)dS_{1}.
\]

\end_inset


\series bold
Demostración
\series default
 cuando una sola parametrización cubre toda la superficie
\series bold
:
\series default
 Sea 
\begin_inset Formula $(U,X)$
\end_inset

 una parametrización de 
\begin_inset Formula $S_{1}$
\end_inset

 y 
\begin_inset Formula $(U,\overline{X}\coloneqq \phi\circ X)$
\end_inset

 una parametrización de 
\begin_inset Formula $S_{2}$
\end_inset

, entonces
\begin_inset Formula 
\begin{align*}
\frac{\partial\overline{X}}{\partial u} & =d\phi_{X(u,v)}\left(\frac{\partial X}{\partial u}\right), & \frac{\partial\overline{X}}{\partial v} & =d\phi_{X(u,v)}\left(\frac{\partial X}{\partial v}\right),
\end{align*}

\end_inset

luego
\begin_inset Formula 
\[
\left\Vert \frac{\partial\overline{X}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial v}\right\Vert =\left\Vert J\phi_{X(u,v)}\frac{\partial X}{\partial u}\wedge J\phi_{X(u,v)}\frac{\partial X}{\partial v}\right\Vert =|J\theta_{X(u,v)}|\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert ,
\]

\end_inset

de modo que
\begin_inset Formula 
\begin{align*}
\int_{S_{2}}f\,dS_{2} & =\iint_{\overline{X}^{-1}(S_{2})}(f\circ\overline{X})\left\Vert \frac{\partial\overline{X}}{\partial u}\wedge\frac{\partial\overline{X}}{\partial v}\right\Vert \\
 & =\iint_{X^{-1}(\phi^{-1}(S_{2}))}(f\circ\overline{X})|\det(d\phi_{X})|\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert \\
 & =\iint_{X^{-1}(S_{1})}(f\circ\phi\circ X)|\det(d\phi_{X})|\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert =\int_{S_{1}}(f\circ\phi)|\det(d\phi)|dS_{2}.
\end{align*}

\end_inset

Para la última igualdad, como 
\begin_inset Formula $\phi$
\end_inset

 es un difeomorfismo, 
\begin_inset Formula $\det(d\phi_{X(u,v)})$
\end_inset

 no se anula y no cambia de signo.
\end_layout

\begin_layout Standard
Como 
\series bold
teorema
\series default
, si 
\begin_inset Formula $S$
\end_inset

 es una superficie regular orientada por 
\begin_inset Formula $N:S\to\mathbb{S}^{2}$
\end_inset

, 
\begin_inset Formula $p\in S$
\end_inset

 cumple 
\begin_inset Formula $K(p)\neq0$
\end_inset

 y 
\begin_inset Formula $R$
\end_inset

 es una región de 
\begin_inset Formula $S$
\end_inset

 con 
\begin_inset Formula $p\in R$
\end_inset

 tal que 
\begin_inset Formula $N:R\to N(R)$
\end_inset

 es un difeomorfismo, entonces el área de 
\begin_inset Formula $N(R)\subseteq\mathbb{S}^{2}$
\end_inset

 es
\begin_inset Formula 
\[
A(N(R))=\int_{R}|K|dS,
\]

\end_inset

y
\begin_inset Formula 
\[
|K(p)|=\lim_{\varepsilon\to0}\frac{A(N(B(p,\varepsilon)))}{A(B(p,\varepsilon))}.
\]

\end_inset


\series bold
Demostración:
\series default
 Por el teorema del cambio de variable para 
\begin_inset Formula $f(p)\equiv1$
\end_inset

, como 
\begin_inset Formula $\det(dN_{p})=-\det(dA_{p})=-K(p)$
\end_inset

,
\begin_inset Formula 
\[
A(N(R))=\int_{N(R)}d\mathbb{S}^{2}=\int_{R}|\det(dN_{p})|dS=\int_{R}|K|dS.
\]

\end_inset

Ahora bien, por continuidad, 
\begin_inset Formula $K\neq0$
\end_inset

 en un entorno 
\begin_inset Formula $V$
\end_inset

 de 
\begin_inset Formula $p$
\end_inset

, luego 
\begin_inset Formula $\det(dN_{q})\neq0$
\end_inset

 para 
\begin_inset Formula $q\in V$
\end_inset

, 
\begin_inset Formula $N|_{V}$
\end_inset

 es un difeomorfismo y existe un 
\begin_inset Formula $\varepsilon_{0}$
\end_inset

 tal que, para 
\begin_inset Formula $\varepsilon\in(0,\varepsilon_{0}]$
\end_inset

, 
\begin_inset Formula $B(p,\varepsilon)\subseteq V$
\end_inset

 y por tanto
\begin_inset Formula 
\[
A(N(B(p,\varepsilon)))=\int_{B(p,\varepsilon)}|K|dS=|K(p_{\varepsilon})|\int_{B(p,\varepsilon)}dS=|K(p_{\varepsilon})|A(B(p,\varepsilon)),
\]

\end_inset

donde 
\begin_inset Formula $p_{\varepsilon}\in B(p,\varepsilon)$
\end_inset

 se obtiene del teorema del punto medio.
 Despejando 
\begin_inset Formula $|K(p_{\varepsilon})|$
\end_inset

 y tomando límites cuando 
\begin_inset Formula $\varepsilon\to0$
\end_inset

 se obtiene el resultado.
\end_layout

\end_body
\end_document