aboutsummaryrefslogtreecommitdiff
path: root/1.2.11.1.lyx
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan@mnpi.eu>2025-05-16 22:18:44 +0200
committerJuan Marín Noguera <juan@mnpi.eu>2025-05-16 22:18:44 +0200
commit4f670b750af5c11e1eac16d9cd8556455f89f46a (patch)
treee0f8d7b33df2727d89150f799ee8628821fda80a /1.2.11.1.lyx
parent16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff)
Changed layout for more manageable volumes
Diffstat (limited to '1.2.11.1.lyx')
-rw-r--r--1.2.11.1.lyx556
1 files changed, 0 insertions, 556 deletions
diff --git a/1.2.11.1.lyx b/1.2.11.1.lyx
deleted file mode 100644
index daa07e2..0000000
--- a/1.2.11.1.lyx
+++ /dev/null
@@ -1,556 +0,0 @@
-#LyX 2.4 created this file. For more info see https://www.lyx.org/
-\lyxformat 620
-\begin_document
-\begin_header
-\save_transient_properties true
-\origin unavailable
-\textclass book
-\use_default_options true
-\maintain_unincluded_children no
-\language american
-\language_package default
-\inputencoding utf8
-\fontencoding auto
-\font_roman "default" "default"
-\font_sans "default" "default"
-\font_typewriter "default" "default"
-\font_math "auto" "auto"
-\font_default_family default
-\use_non_tex_fonts false
-\font_sc false
-\font_roman_osf false
-\font_sans_osf false
-\font_typewriter_osf false
-\font_sf_scale 100 100
-\font_tt_scale 100 100
-\use_microtype false
-\use_dash_ligatures true
-\graphics default
-\default_output_format default
-\output_sync 0
-\bibtex_command default
-\index_command default
-\float_placement class
-\float_alignment class
-\paperfontsize default
-\spacing single
-\use_hyperref false
-\papersize default
-\use_geometry false
-\use_package amsmath 1
-\use_package amssymb 1
-\use_package cancel 1
-\use_package esint 1
-\use_package mathdots 1
-\use_package mathtools 1
-\use_package mhchem 1
-\use_package stackrel 1
-\use_package stmaryrd 1
-\use_package undertilde 1
-\cite_engine basic
-\cite_engine_type default
-\biblio_style plain
-\use_bibtopic false
-\use_indices false
-\paperorientation portrait
-\suppress_date false
-\justification true
-\use_refstyle 1
-\use_formatted_ref 0
-\use_minted 0
-\use_lineno 0
-\index Index
-\shortcut idx
-\color #008000
-\end_index
-\secnumdepth 3
-\tocdepth 3
-\paragraph_separation indent
-\paragraph_indentation default
-\is_math_indent 0
-\math_numbering_side default
-\quotes_style english
-\dynamic_quotes 0
-\papercolumns 1
-\papersides 1
-\paperpagestyle default
-\tablestyle default
-\tracking_changes false
-\output_changes false
-\change_bars false
-\postpone_fragile_content true
-\html_math_output 0
-\html_css_as_file 0
-\html_be_strict false
-\docbook_table_output 0
-\docbook_mathml_prefix 1
-\end_header
-
-\begin_body
-
-\begin_layout Standard
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-TODO 1,
- 2,
- 4,
- 6,
- 11,
- 13 (1 p.) (est.
- 0:21:19)
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-exerc1[HM01]
-\end_layout
-
-\end_inset
-
-What is
-\begin_inset Formula $\lim_{n\to\infty}O(n^{-1/3})$
-\end_inset
-
-?
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-0.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc2[M10]
-\end_layout
-
-\end_inset
-
-Mr.
- B.
- C.
- Dull obtained astonishing results by using the
-\begin_inset Quotes eld
-\end_inset
-
-self-evident
-\begin_inset Quotes erd
-\end_inset
-
- formula
-\begin_inset Formula $O(f(n))-O(f(n))=0$
-\end_inset
-
-.
- What was his mistake,
- and what should the right-hand side of his formula has been?
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-
-\begin_inset Formula $O(f(n))$
-\end_inset
-
- is a set of functions,
- not a single function,
- so the two
-\begin_inset Formula $O(f(n))$
-\end_inset
-
- do not cancel out (for example,
- the first
-\begin_inset Formula $O(f(n))$
-\end_inset
-
- could represent
-\begin_inset Formula $f(n)$
-\end_inset
-
- and the second one could be 0).
- The right hand side should be another
-\begin_inset Formula $O(f(n))$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc4[M15]
-\end_layout
-
-\end_inset
-
-Give an asymptotic expansion of
-\begin_inset Formula $n(\sqrt[n]{a}-1)$
-\end_inset
-
-,
- if
-\begin_inset Formula $a>0$
-\end_inset
-
-,
- to terms
-\begin_inset Formula $O(1/n^{3})$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-We can do this by considering the function in terms of
-\begin_inset Formula $x\coloneqq\frac{1}{n}$
-\end_inset
-
-,
- which would be
-\begin_inset Formula $\frac{1}{x}(a^{x}-1)$
-\end_inset
-
-.
- Then
-\begin_inset Formula $a^{x}=\text{e}^{x\ln a}=1+x\ln a+\frac{1}{2}x^{2}\ln^{2}a+\frac{1}{6}x^{3}\ln^{3}a+O(x^{4}\ln^{4}a)$
-\end_inset
-
-,
- so
-\begin_inset Formula
-\[
-a^{x}-1=x\ln a+\frac{x^{2}\ln^{2}a}{2}+\frac{x^{3}\ln^{3}a}{6}+O(x^{4})=\frac{\ln a}{n}+\frac{\ln^{2}a}{2n^{2}}+\frac{\ln^{3}a}{6n^{3}}+O(n^{-4})
-\]
-
-\end_inset
-
-and finally
-\begin_inset Formula
-\[
-n(\sqrt[n]{a}-1)=\ln a+\frac{\ln^{2}a}{2n}+\frac{\ln^{3}a}{6n^{2}}+O(n^{-3}).
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc6[M20]
-\end_layout
-
-\end_inset
-
-What is wrong with the following arguments?
-
-\begin_inset Quotes eld
-\end_inset
-
-Since
-\begin_inset Formula $n=O(n)$
-\end_inset
-
-,
- and
-\begin_inset Formula $2n=O(n)$
-\end_inset
-
-,
- ...,
- we have
-\begin_inset Formula
-\[
-\sum_{k=1}^{n}kn=\sum_{k=1}^{n}O(n)=O(n^{2}).\text{''}
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-The second expression does not make sense.
- It is a sum of
-\begin_inset Formula $n$
-\end_inset
-
- functions each of which has
-\begin_inset Formula $n$
-\end_inset
-
- as a parameter,
- but if
-\begin_inset Formula $n$
-\end_inset
-
- is a parameter,
- it cannot be an
-\begin_inset Quotes eld
-\end_inset
-
-external
-\begin_inset Quotes erd
-\end_inset
-
- parameter of the function represented by
-\begin_inset Formula $O(n)$
-\end_inset
-
- as well.
- In this case,
- it is invalid to move the big O inside the sum as the range of the sum depends on
-\begin_inset Formula $n$
-\end_inset
-
- and so does the domain of values
-\begin_inset Formula $k$
-\end_inset
-
- can take,
- so
-\begin_inset Formula $k$
-\end_inset
-
-,
- which depends on
-\begin_inset Formula $n$
-\end_inset
-
-,
- cannot be treated like a constant.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc11[M11]
-\end_layout
-
-\end_inset
-
-Explain why Eq.
- (18) is true.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-The first identity is because
-\begin_inset Formula $\sqrt[n]{n}=\text{e}^{\ln\sqrt[n]{n}}=\text{e}^{\ln n^{1/n}}=\text{e}^{\ln n/n}$
-\end_inset
-
-,
- taking the power
-\begin_inset Formula $1/n$
-\end_inset
-
- out of the logarithm.
- The second identity is a direct application of Eq.
- (12),
- using that
-\begin_inset Formula $\ln n/n\to0$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc13[M10]
-\end_layout
-
-\end_inset
-
-Prove or disprove:
-
-\begin_inset Formula $g(n)=\Omega(f(n))$
-\end_inset
-
- if and only if
-\begin_inset Formula $f(n)=O(g(n))$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-
-\begin_inset Formula $g(n)=\Omega(f(n))$
-\end_inset
-
- if and only if there exist
-\begin_inset Formula $n_{0}$
-\end_inset
-
- and
-\begin_inset Formula $L$
-\end_inset
-
- such that
-\begin_inset Formula $|g(n)|\geq L|f(n)|$
-\end_inset
-
- for each
-\begin_inset Formula $n\geq n_{0}$
-\end_inset
-
-,
- but this is the same as saying that,
- for all such
-\begin_inset Formula $n$
-\end_inset
-
-,
-
-\begin_inset Formula $|f(n)|\leq\frac{1}{L}|g(n)|$
-\end_inset
-
-,
- which is to say that
-\begin_inset Formula $f(n)=O(g(n))$
-\end_inset
-
-.
- Since arguably this
-\begin_inset Formula $L$
-\end_inset
-
- must be positive (otherwise the statement is trivial),
- taking
-\begin_inset Formula $\frac{1}{L}$
-\end_inset
-
- is valid,
- and likewise,
- if
-\begin_inset Formula $|f(n)|\leq M|g(n)|$
-\end_inset
-
- for each
-\begin_inset Formula $n\geq n_{0}$
-\end_inset
-
- and some
-\begin_inset Formula $M$
-\end_inset
-
-,
- we can always make this
-\begin_inset Formula $M$
-\end_inset
-
- positive to make the reverse argument.
-\end_layout
-
-\end_body
-\end_document