diff options
Diffstat (limited to '1.2.11.1.lyx')
| -rw-r--r-- | 1.2.11.1.lyx | 556 |
1 files changed, 0 insertions, 556 deletions
diff --git a/1.2.11.1.lyx b/1.2.11.1.lyx deleted file mode 100644 index daa07e2..0000000 --- a/1.2.11.1.lyx +++ /dev/null @@ -1,556 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\use_default_options true -\maintain_unincluded_children no -\language american -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content true -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO 1, - 2, - 4, - 6, - 11, - 13 (1 p.) (est. - 0:21:19) -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc1[HM01] -\end_layout - -\end_inset - -What is -\begin_inset Formula $\lim_{n\to\infty}O(n^{-1/3})$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -0. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc2[M10] -\end_layout - -\end_inset - -Mr. - B. - C. - Dull obtained astonishing results by using the -\begin_inset Quotes eld -\end_inset - -self-evident -\begin_inset Quotes erd -\end_inset - - formula -\begin_inset Formula $O(f(n))-O(f(n))=0$ -\end_inset - -. - What was his mistake, - and what should the right-hand side of his formula has been? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $O(f(n))$ -\end_inset - - is a set of functions, - not a single function, - so the two -\begin_inset Formula $O(f(n))$ -\end_inset - - do not cancel out (for example, - the first -\begin_inset Formula $O(f(n))$ -\end_inset - - could represent -\begin_inset Formula $f(n)$ -\end_inset - - and the second one could be 0). - The right hand side should be another -\begin_inset Formula $O(f(n))$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc4[M15] -\end_layout - -\end_inset - -Give an asymptotic expansion of -\begin_inset Formula $n(\sqrt[n]{a}-1)$ -\end_inset - -, - if -\begin_inset Formula $a>0$ -\end_inset - -, - to terms -\begin_inset Formula $O(1/n^{3})$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We can do this by considering the function in terms of -\begin_inset Formula $x\coloneqq\frac{1}{n}$ -\end_inset - -, - which would be -\begin_inset Formula $\frac{1}{x}(a^{x}-1)$ -\end_inset - -. - Then -\begin_inset Formula $a^{x}=\text{e}^{x\ln a}=1+x\ln a+\frac{1}{2}x^{2}\ln^{2}a+\frac{1}{6}x^{3}\ln^{3}a+O(x^{4}\ln^{4}a)$ -\end_inset - -, - so -\begin_inset Formula -\[ -a^{x}-1=x\ln a+\frac{x^{2}\ln^{2}a}{2}+\frac{x^{3}\ln^{3}a}{6}+O(x^{4})=\frac{\ln a}{n}+\frac{\ln^{2}a}{2n^{2}}+\frac{\ln^{3}a}{6n^{3}}+O(n^{-4}) -\] - -\end_inset - -and finally -\begin_inset Formula -\[ -n(\sqrt[n]{a}-1)=\ln a+\frac{\ln^{2}a}{2n}+\frac{\ln^{3}a}{6n^{2}}+O(n^{-3}). -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc6[M20] -\end_layout - -\end_inset - -What is wrong with the following arguments? - -\begin_inset Quotes eld -\end_inset - -Since -\begin_inset Formula $n=O(n)$ -\end_inset - -, - and -\begin_inset Formula $2n=O(n)$ -\end_inset - -, - ..., - we have -\begin_inset Formula -\[ -\sum_{k=1}^{n}kn=\sum_{k=1}^{n}O(n)=O(n^{2}).\text{''} -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The second expression does not make sense. - It is a sum of -\begin_inset Formula $n$ -\end_inset - - functions each of which has -\begin_inset Formula $n$ -\end_inset - - as a parameter, - but if -\begin_inset Formula $n$ -\end_inset - - is a parameter, - it cannot be an -\begin_inset Quotes eld -\end_inset - -external -\begin_inset Quotes erd -\end_inset - - parameter of the function represented by -\begin_inset Formula $O(n)$ -\end_inset - - as well. - In this case, - it is invalid to move the big O inside the sum as the range of the sum depends on -\begin_inset Formula $n$ -\end_inset - - and so does the domain of values -\begin_inset Formula $k$ -\end_inset - - can take, - so -\begin_inset Formula $k$ -\end_inset - -, - which depends on -\begin_inset Formula $n$ -\end_inset - -, - cannot be treated like a constant. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc11[M11] -\end_layout - -\end_inset - -Explain why Eq. - (18) is true. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The first identity is because -\begin_inset Formula $\sqrt[n]{n}=\text{e}^{\ln\sqrt[n]{n}}=\text{e}^{\ln n^{1/n}}=\text{e}^{\ln n/n}$ -\end_inset - -, - taking the power -\begin_inset Formula $1/n$ -\end_inset - - out of the logarithm. - The second identity is a direct application of Eq. - (12), - using that -\begin_inset Formula $\ln n/n\to0$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc13[M10] -\end_layout - -\end_inset - -Prove or disprove: - -\begin_inset Formula $g(n)=\Omega(f(n))$ -\end_inset - - if and only if -\begin_inset Formula $f(n)=O(g(n))$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $g(n)=\Omega(f(n))$ -\end_inset - - if and only if there exist -\begin_inset Formula $n_{0}$ -\end_inset - - and -\begin_inset Formula $L$ -\end_inset - - such that -\begin_inset Formula $|g(n)|\geq L|f(n)|$ -\end_inset - - for each -\begin_inset Formula $n\geq n_{0}$ -\end_inset - -, - but this is the same as saying that, - for all such -\begin_inset Formula $n$ -\end_inset - -, - -\begin_inset Formula $|f(n)|\leq\frac{1}{L}|g(n)|$ -\end_inset - -, - which is to say that -\begin_inset Formula $f(n)=O(g(n))$ -\end_inset - -. - Since arguably this -\begin_inset Formula $L$ -\end_inset - - must be positive (otherwise the statement is trivial), - taking -\begin_inset Formula $\frac{1}{L}$ -\end_inset - - is valid, - and likewise, - if -\begin_inset Formula $|f(n)|\leq M|g(n)|$ -\end_inset - - for each -\begin_inset Formula $n\geq n_{0}$ -\end_inset - - and some -\begin_inset Formula $M$ -\end_inset - -, - we can always make this -\begin_inset Formula $M$ -\end_inset - - positive to make the reverse argument. -\end_layout - -\end_body -\end_document |
