diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /1.2.6.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to '1.2.6.lyx')
| -rw-r--r-- | 1.2.6.lyx | 3599 |
1 files changed, 0 insertions, 3599 deletions
diff --git a/1.2.6.lyx b/1.2.6.lyx deleted file mode 100644 index 047325d..0000000 --- a/1.2.6.lyx +++ /dev/null @@ -1,3599 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\usepackage{amsmath} -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\stirla}[2]{\genfrac[]{0pt}{}{#1}{#2}} -{\begin{bmatrix}{\textstyle #1}\\ -{\textstyle #2} -\end{bmatrix}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\stirlb}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} -{\begin{Bmatrix}{\textstyle #1}\\ -{\textstyle #2} -\end{Bmatrix}} -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc1[00] -\end_layout - -\end_inset - -How many combinations of -\begin_inset Formula $n$ -\end_inset - - things taken -\begin_inset Formula $n-1$ -\end_inset - - at a time are possible? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\binom{n}{n-1}=\frac{n!}{1!(n-1)!}=n$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc2[00] -\end_layout - -\end_inset - -What is -\begin_inset Formula $\binom{0}{0}$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\binom{0}{0}=\frac{1!}{1!1!}=1$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc3[00] -\end_layout - -\end_inset - -How many bridge hands (13 cards out of a 52-card deck) are possible? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\binom{52}{13}=635013559600$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc4[10] -\end_layout - -\end_inset - -Give the answer to exercise 3 as a product of prime numbers. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We have -\begin_inset Formula $\binom{52}{13}=\frac{52!}{13!39!}$ -\end_inset - -. - Using Equation 1.2.5.8: -\end_layout - -\begin_layout Standard -\begin_inset Formula -\begin{align*} -52! & =2^{49}3^{23}5^{12}7^{8}11^{4}13^{4}17^{3}19^{2}23^{2}\cdot29\cdot31\cdot37\cdot41\cdot43\cdot47,\\ -39! & =2^{35}3^{18}5^{8}7^{5}11^{3}13^{3}17^{2}19^{2}\cdot23\cdot29\cdot31\cdot37\\ -13! & =2^{10}3^{5}5^{2}\cdot7\cdot11\cdot13\\ -\hline \binom{52}{13} & =2^{4}5^{2}7^{2}\cdot17\cdot23\cdot41\cdot43\cdot47. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc5[05] -\end_layout - -\end_inset - -Use Pascal's triangle to explain the fact that -\begin_inset Formula $11^{4}=14641$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $11^{4}=(10+1)^{4}=\binom{4}{0}10^{4}1^{0}+\binom{4}{1}10^{3}1^{1}+\binom{4}{2}10^{2}1^{2}+\binom{4}{3}10^{1}1^{3}+\binom{4}{4}10^{0}1^{4}=14641$ -\end_inset - -. - The pattern works for the number 11 in any given base until the number 10 or higher appears, - which in this case happens in the next row. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc6[10] -\end_layout - -\end_inset - -Pascal's triangle (Table 1) can be extended in all directions by use of the addition formula, - Eq. - (9). - Find the three rows that go on -\emph on -top -\emph default - of Table 1 (i.e. - for -\begin_inset Formula $r=-1$ -\end_inset - -, - -\begin_inset Formula $-2$ -\end_inset - -, - and -\begin_inset Formula $-3$ -\end_inset - -). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The table is based on the properties that -\begin_inset Formula $\binom{r}{k}=\binom{r-1}{k}+\binom{r-1}{k-1}$ -\end_inset - - and that -\begin_inset Formula $\binom{r}{k}=0$ -\end_inset - - for -\begin_inset Formula $k<0$ -\end_inset - -. - This implies that -\begin_inset Formula $\binom{r}{0}=1$ -\end_inset - - for any -\begin_inset Formula $r\in\mathbb{Z}$ -\end_inset - - (really for any -\begin_inset Formula $r\in\mathbb{R}$ -\end_inset - -) and that -\begin_inset Formula $\binom{r-1}{k}=\binom{r}{k}-\binom{r-1}{k-1}$ -\end_inset - - (the one below in the table minus the one on the left). -\end_layout - -\begin_layout Standard -\align center -\begin_inset Tabular -<lyxtabular version="3" rows="4" columns="11"> -<features tabularvalignment="middle"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<column alignment="center" valignment="top"> -<row> -<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $r$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{0}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{1}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{2}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{3}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{4}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{5}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{6}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{7}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{8}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" topline="true" bottomline="true" rightline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $\binom{r}{9}$ -\end_inset - - -\end_layout - -\end_inset -</cell> -</row> -<row> -<cell alignment="center" valignment="top" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-3$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-3$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $6$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-10$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $15$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-21$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $28$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-36$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $45$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" rightline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-55$ -\end_inset - - -\end_layout - -\end_inset -</cell> -</row> -<row> -<cell alignment="center" valignment="top" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-2$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-2$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $3$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-4$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $5$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-6$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $7$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-8$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $9$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" rightline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-10$ -\end_inset - - -\end_layout - -\end_inset -</cell> -</row> -<row> -<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -1 -\end_layout - -\end_inset -</cell> -<cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none"> -\begin_inset Text - -\begin_layout Plain Layout -\begin_inset Formula $-1$ -\end_inset - - -\end_layout - -\end_inset -</cell> -</row> -</lyxtabular> - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc8[00] -\end_layout - -\end_inset - -What property of Pascal's triangle is reflected in the -\begin_inset Quotes eld -\end_inset - -symmetry condition, -\begin_inset Quotes erd -\end_inset - - Eq. - (6)? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The symmetry of each row -\begin_inset Formula $r$ -\end_inset - - with center in -\begin_inset Formula $k=\frac{r}{2}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc9[01] -\end_layout - -\end_inset - -What is the value of -\begin_inset Formula $\binom{n}{n}$ -\end_inset - -? - (Consider all integers -\begin_inset Formula $n$ -\end_inset - -.) -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -For -\begin_inset Formula $n\geq0$ -\end_inset - -, - -\begin_inset Formula $\binom{n}{n}=\frac{n!}{n!1!}=1$ -\end_inset - -. - For -\begin_inset Formula $n<0$ -\end_inset - -, - by definition -\begin_inset Formula $\binom{n}{n}=0$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc10[M25] -\end_layout - -\end_inset - -If -\begin_inset Formula $p$ -\end_inset - - is prime, - show that: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \pmod p$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p}{k}\equiv0\pmod p$ -\end_inset - -, - for -\begin_inset Formula $1\leq k\leq p-1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p-1}{k}\equiv(-1)^{k}\pmod p$ -\end_inset - -, - for -\begin_inset Formula $0\leq k\leq p-1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p+1}{k}\equiv0\pmod p$ -\end_inset - -, - for -\begin_inset Formula $2\leq k\leq p-1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -(É. - Lucas, - 1877.) -\begin_inset Formula -\[ -\binom{n}{k}\equiv\binom{\lfloor n/p\rfloor}{\lfloor k/p\rfloor}\binom{n\bmod p}{k\bmod p}\pmod p. -\] - -\end_inset - - -\end_layout - -\begin_layout Enumerate -If the representations of -\begin_inset Formula $n$ -\end_inset - - and -\begin_inset Formula $k$ -\end_inset - - in the -\begin_inset Formula $p$ -\end_inset - --ary number system are -\begin_inset Formula -\begin{eqnarray*} -\begin{array}{rlc} -n & = & a_{r}p^{r}+\dots+a_{1}p+a_{0},\\ -k & = & b_{r}p^{r}+\dots+b_{1}p+b_{0}, -\end{array} & \text{then} & \binom{n}{k}\equiv\binom{a_{r}}{b_{r}}\cdots\binom{a_{1}}{b_{1}}\binom{a_{0}}{b_{0}}\pmod p. -\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We assume -\begin_inset Formula $n\in\mathbb{Z}$ -\end_inset - - and -\begin_inset Formula $k\in\mathbb{N}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Using part 5, -\begin_inset Formula -\[ -\binom{n}{p}\equiv\binom{\lfloor n/p\rfloor}{\lfloor p/p\rfloor}\binom{n\bmod p}{p\bmod p}=\binom{\lfloor n/p\rfloor}{1}\binom{n\bmod p}{0}=\left\lfloor \frac{n}{p}\right\rfloor \cdot1. -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -\begin_inset Note Comment -status open - -\begin_layout Plain Layout -Since we know -\begin_inset Formula $\binom{n}{p}=\frac{n(n-1)\cdots(n-p+1)}{1\cdot2\cdot\cdots\cdot p}\in\mathbb{Z}$ -\end_inset - - (because of the addition formula), - and since -\begin_inset Formula $p$ -\end_inset - - appears once in the denominator, - there must be a -\begin_inset Formula $k\in\{0,\dots,p-1\}$ -\end_inset - - such that -\begin_inset Formula $p\mid n-k$ -\end_inset - -, - and it obviously must be unique. - It's then easy to see that -\begin_inset Formula $\lfloor\frac{n}{p}\rfloor=\frac{n-k}{p}$ -\end_inset - -, - and so -\begin_inset Formula -\[ -\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \frac{n(n-1)\cdots(n-k+1)(n-k-1)\cdots(n-p+1)}{1\cdot2\cdots(p-1)}\pmod p. -\] - -\end_inset - -Let us call -\begin_inset Formula $b$ -\end_inset - - the numerator in the fraction of the above formula, - we just need to prove that -\begin_inset Formula $\frac{b}{(p-1)!}\equiv1\pmod p$ -\end_inset - -, - which by rule 1.2.4–C is equivalent to -\begin_inset Formula $b\equiv(p-1)!\bmod p!$ -\end_inset - -. - Since -\begin_inset Formula $b$ -\end_inset - - is a multiple of -\begin_inset Formula $(p-1)!$ -\end_inset - - (otherwise -\begin_inset Formula $\binom{n}{p}$ -\end_inset - - would be an integer), - -\begin_inset Formula $b\equiv0\equiv(p-1)!\bmod(p-1)!$ -\end_inset - -, - and since -\begin_inset Formula $\{(n-j)\bmod p\}_{0\leq j<p}^{j\neq k}=\{1,\dots,p-1\}$ -\end_inset - -, - we have -\begin_inset Formula -\[ -b=\prod_{\begin{subarray}{c} -0\leq j<p\\ -j\neq k -\end{subarray}}(n-j)\equiv\prod_{j=1}^{p-1}j=(p-1)!\pmod p. -\] - -\end_inset - -Therefore, - since -\begin_inset Formula $(p-1)!\bot p$ -\end_inset - -, - rule 1.2.4–D gives us the result. -\end_layout - -\end_inset - - -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\binom{p}{k}=\frac{p!}{k!(p-k)!}$ -\end_inset - -, - but neither -\begin_inset Formula $k!$ -\end_inset - - nor -\begin_inset Formula $(p-k)!$ -\end_inset - - divide -\begin_inset Formula $p$ -\end_inset - - while -\begin_inset Formula $p!$ -\end_inset - - does, - so -\begin_inset Formula $p\mid\binom{p}{k}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -We prove it by induction on -\begin_inset Formula $k$ -\end_inset - -. - For -\begin_inset Formula $k=0$ -\end_inset - -, - -\begin_inset Formula $\binom{p-1}{0}=1=(-1)^{0}$ -\end_inset - -, - so the equation holds. - For -\begin_inset Formula $1\leq k\leq p-1$ -\end_inset - -, - -\begin_inset Formula -\[ -\binom{p-1}{k}=\binom{p}{k}-\binom{p-1}{k-1}\equiv0-(-1)^{k-1}=(-1)^{k}\pmod p, -\] - -\end_inset - - where for the equivalence we use the previous part of the exercise and the induction hypothesis. -\end_layout - -\begin_layout Enumerate -Using part 2, -\begin_inset Formula -\[ -\binom{p+1}{k}=\binom{p}{k}+\binom{p}{k-1}\equiv0-0=0\pmod k. -\] - -\end_inset - - -\end_layout - -\begin_layout Enumerate -If -\begin_inset Formula $k<0$ -\end_inset - -, - then -\begin_inset Formula $\binom{n}{k}=0$ -\end_inset - - and -\begin_inset Formula $\binom{\lfloor n/p\rfloor}{\lfloor k/p\rfloor}=0$ -\end_inset - -. - Now let's prove this for -\begin_inset Formula $k\geq0$ -\end_inset - -. - First, - note that, - if -\begin_inset Formula $a,b,c,d\in\mathbb{Z}$ -\end_inset - -, - -\begin_inset Formula $\frac{a}{b},\frac{c}{d}\in\mathbb{Z}$ -\end_inset - -, - and -\begin_inset Formula $a\equiv c$ -\end_inset - - and -\begin_inset Formula $0\not\equiv b\equiv d\pmod p$ -\end_inset - -, - then -\begin_inset Formula -\[ -\frac{a}{b}\equiv\frac{c}{d}\pmod p. -\] - -\end_inset - -Effectively, - let -\begin_inset Formula $a=jp+b$ -\end_inset - - -\begin_inset Formula $c=kp+d$ -\end_inset - - for some integers -\begin_inset Formula $j$ -\end_inset - - and -\begin_inset Formula $k$ -\end_inset - -, - then -\begin_inset Formula -\[ -\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}=\frac{(jd-bk)p}{bd}, -\] - -\end_inset - -which is a multiple of -\begin_inset Formula $p$ -\end_inset - - because it's an integer and, - since -\begin_inset Formula $bd\nmid p$ -\end_inset - -, - it follows that -\begin_inset Formula $bd\mid jd-bk$ -\end_inset - -. - Now, - let -\begin_inset Formula $n\eqqcolon n'p+n_{0}$ -\end_inset - - and -\begin_inset Formula $k\eqqcolon k'p+k_{0}$ -\end_inset - - with -\begin_inset Formula $n',n_{0},k',k_{0}\in\mathbb{Z}$ -\end_inset - - and -\begin_inset Formula $0\leq n_{0},k_{0}<p$ -\end_inset - -. - Clearly -\begin_inset Formula $n_{0}\equiv n$ -\end_inset - - and -\begin_inset Formula $k_{0}\equiv k$ -\end_inset - - (modulo -\begin_inset Formula $p$ -\end_inset - -), - and then -\begin_inset Formula -\begin{align*} -\binom{n}{k} & =\prod_{j=1}^{k}\frac{n+1-j}{j}=\left(\prod_{j=1}^{pk'}\frac{n+1-j}{j}\right)\left(\prod_{j=1}^{k_{0}}\frac{pn'+n_{0}+1-pk'-j}{j+pk'}\right)\\ - & \equiv\left(\prod_{j=1}^{pk'}\frac{n+1-j}{j}\right)\left(\prod_{j=1}^{k_{0}}\frac{n_{0}+1-j}{j}\right)=\binom{n}{pk'}\binom{n_{0}}{k_{0}}\pmod p, -\end{align*} - -\end_inset - -where for the equivalence we used that both -\begin_inset Formula $\binom{n}{k}$ -\end_inset - - and -\begin_inset Formula $\binom{n}{pk'}\binom{n_{0}}{k_{0}}$ -\end_inset - - are integers. - Now we have to prove that -\begin_inset Formula $\binom{n}{pk'}\equiv\binom{n'}{k'}$ -\end_inset - -. - This coefficient can be factored as -\begin_inset Formula -\[ -\binom{n}{pk'}=\prod_{j=0}^{k'-1}\left(\prod_{i=1}^{p}\frac{n+1-jp-i}{jp+i}\right)=\prod_{j=0}^{k'-1}\prod_{i=1}^{p}\frac{(n'-j)p+n_{0}+1-i}{jp+i}. -\] - -\end_inset - -Each of the -\begin_inset Formula $k'$ -\end_inset - - groups of factors has exactly one factor whose numerator is a multiple of -\begin_inset Formula $p$ -\end_inset - - (when -\begin_inset Formula $i=s\coloneqq(n_{0}+1)\bmod p$ -\end_inset - -), - and one whose denominator is. - Canceling the -\begin_inset Formula $p$ -\end_inset - - in them and taking congruences on the other factors, - we get -\begin_inset Formula -\begin{align*} -\binom{n}{pk'} & \equiv\prod_{j=0}^{k'-1}\left(\frac{n'-j}{j+1}\frac{\prod_{\begin{subarray}{c} -1\leq i\leq p\\ -i\neq s -\end{subarray}}(n_{0}+1-i)}{(p-1)!}\right)=\prod_{j=0}^{k'-1}\left(\frac{n'-j}{j+1}\frac{(p-1)!}{(p-1)!}\right)=\\ - & =\prod_{j=1}^{k'}\frac{n'+1+j}{j}=\binom{n'}{k'}\pmod p. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Enumerate -From part 5 by induction on -\begin_inset Formula $r$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc11[M20] -\end_layout - -\end_inset - -(E. - Kummer, - 1852.) Let -\begin_inset Formula $p$ -\end_inset - - be prime. - Show that if -\begin_inset Formula $p^{n}$ -\end_inset - - divides -\begin_inset Formula -\[ -\binom{a+b}{a} -\] - -\end_inset - -but -\begin_inset Formula $p^{n+1}$ -\end_inset - - does not, - then -\begin_inset Formula $n$ -\end_inset - - is equal to the number of -\emph on -carries -\emph default - that occur when -\begin_inset Formula $a$ -\end_inset - - is added to -\begin_inset Formula $b$ -\end_inset - - in the -\begin_inset Formula $p$ -\end_inset - --ary number system. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Because of the way the exercise is written, - we may assume that both -\begin_inset Formula $a$ -\end_inset - - and -\begin_inset Formula $b$ -\end_inset - - are natural numbers (non-negative integers), - and therefore -\begin_inset Formula $\binom{a+b}{a}=\frac{(a+b)!}{a!b!}$ -\end_inset - -. - Let -\begin_inset Formula $s_{a}$ -\end_inset - - be the sum of the digits of -\begin_inset Formula $a$ -\end_inset - - in base -\begin_inset Formula $p$ -\end_inset - - and let -\begin_inset Formula $\mu_{a}=\frac{a-s_{a}}{p-1}$ -\end_inset - - be the number of times -\begin_inset Formula $p$ -\end_inset - - appears in the prime factorization of -\begin_inset Formula $a$ -\end_inset - -, - by Exercise 1.2.5–12. - Define -\begin_inset Formula $s_{b}$ -\end_inset - -, - -\begin_inset Formula $\mu_{b}$ -\end_inset - -, - -\begin_inset Formula $s_{c}$ -\end_inset - -, - and -\begin_inset Formula $\mu_{c}$ -\end_inset - - in a similar manner, - with -\begin_inset Formula $c\coloneqq a+b$ -\end_inset - -. - Then the number of times -\begin_inset Formula $p$ -\end_inset - - appears in the prime factorization of -\begin_inset Formula $\binom{a+b}{a}$ -\end_inset - - is precisely -\begin_inset Formula -\[ -\mu_{c}-\mu_{a}-\mu_{b}=\frac{\cancel{c-a-b}-s_{c}+s_{a}+s_{b}}{p-1}, -\] - -\end_inset - -but -\begin_inset Formula $s_{c}$ -\end_inset - - is precisely the sum of -\begin_inset Formula $s_{a}$ -\end_inset - - plus -\begin_inset Formula $s_{b}$ -\end_inset - - except that, - every time we do a carry in the sum in base -\begin_inset Formula $p$ -\end_inset - -, - we have to subtract -\begin_inset Formula $p$ -\end_inset - - and add 1, - that is, - we subtract -\begin_inset Formula $p-1$ -\end_inset - -, - so -\begin_inset Formula $s_{a}+s_{b}-s_{c}$ -\end_inset - - is precisely -\begin_inset Formula $p-1$ -\end_inset - - times the number of carries and this proves the result. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc17[M18] -\end_layout - -\end_inset - -Prove the Chu-Vandermonde formula (21) from Eq. - (15), - using that -\begin_inset Formula $(1+x)^{r+s}=(1+x)^{r}(1+x)^{s}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -If -\begin_inset Formula $n$ -\end_inset - - is negative, - either -\begin_inset Formula $k$ -\end_inset - - or -\begin_inset Formula $n-k$ -\end_inset - - is negative for any -\begin_inset Formula $k$ -\end_inset - - so both sides of the equation are 0. - Otherwise, - for -\begin_inset Formula $x\in(-1,1)$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\sum_{n}\binom{r+s}{n}x^{n}=(1+x)^{r+s}=(1+x)^{r}(1+x)^{s}=\sum_{k}\binom{r}{k}x^{k}\sum_{m}\binom{s}{m}x^{m}=\\ -=\sum_{k}\binom{r}{k}x^{k}\sum_{n}\binom{s}{n-k}x^{n-k}=\sum_{n}\left(\sum_{k}\binom{r}{k}\binom{s}{n-k}\right)x^{n}. -\end{multline*} - -\end_inset - -If -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - - are integers, - the sums are finite and therefore we have polynomials in -\begin_inset Formula $x$ -\end_inset - - in both side, - but since they are both equal in a nonempty open interval, - the coefficients are all equal and we have proved the result. - If -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - - are not integers, - since -\begin_inset Formula -\[ -\binom{r+s}{n}-\sum_{k}\binom{r}{k}\binom{s}{n-k}=0 -\] - -\end_inset - -for all -\begin_inset Formula $r,s\in\mathbb{Z}$ -\end_inset - -, - and the left hand side is a polynomial on -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - -, - it follows that the polynomial is 0 everywhere. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc21[05] -\end_layout - -\end_inset - -Both sides of Eq. - (25) are polynomials in -\begin_inset Formula $s$ -\end_inset - -; - why isn't that equation an identity in -\begin_inset Formula $s$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We know the equation to be valid for -\begin_inset Formula $n+1$ -\end_inset - - values of -\begin_inset Formula $s$ -\end_inset - -, - namely -\begin_inset Formula $0,1,\dots,n$ -\end_inset - -, - but while the polynomial on the left has degree -\begin_inset Formula $n$ -\end_inset - -, - the one on the right has degree -\begin_inset Formula $m+n+1\geq n+1$ -\end_inset - -, - so we cannot apply the reasoning below Eq. - (8). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc30[M24] -\end_layout - -\end_inset - -Show that there is a better way to solve Example 3 than the way used in the text, - by manipulating the sum so that Eq. - (26) applies. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -First, - we note that the terms are nonzero when -\begin_inset Formula $k\geq0$ -\end_inset - - and -\begin_inset Formula $m+2k\leq n+k$ -\end_inset - -, - which happens precisely when -\begin_inset Formula $0\leq k\leq n-m$ -\end_inset - -, - and in particular we may assume -\begin_inset Formula $n\geq m$ -\end_inset - - since otherwise the sum is 0. -\end_layout - -\begin_layout Standard -We start by negating the upper index (rule G) in the second factor and using symmetry (rule B) on the first, - and noting that all factors with negative -\begin_inset Formula $k$ -\end_inset - - are 0: -\begin_inset Formula -\[ -\sum_{k}\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^{k}}{k+1}=\sum_{k\geq0}\binom{n+k}{n-m-k}\binom{-k-1}{k}\frac{1}{k+1}. -\] - -\end_inset - -We have the left hand side of Eq. - (26) with -\begin_inset Formula $t\mapsto1$ -\end_inset - -, - -\begin_inset Formula $r\mapsto-1$ -\end_inset - -, - -\begin_inset Formula $n\mapsto n-m$ -\end_inset - -, - and -\begin_inset Formula $s\mapsto2n-m$ -\end_inset - -, - so this is equal to -\begin_inset Formula -\[ -\binom{-1+2n-m-n+m}{n-m}=\binom{n-1}{n-m}=\binom{n-1}{m-1}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc31[M20] -\end_layout - -\end_inset - -Evaluate -\begin_inset Formula -\[ -\sum_{k}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r+k}{m+n} -\] - -\end_inset - -in terms of -\begin_inset Formula $r$ -\end_inset - -, - -\begin_inset Formula $s$ -\end_inset - -, - -\begin_inset Formula $m$ -\end_inset - -, - and -\begin_inset Formula $n$ -\end_inset - -, - given that -\begin_inset Formula $m$ -\end_inset - - and -\begin_inset Formula $n$ -\end_inset - - are integers. - Begin by replacing -\begin_inset Formula -\begin{eqnarray*} -\binom{r+k}{m+n} & \text{ by } & \sum_{j}\binom{r}{m+n-j}\binom{k}{j}. -\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We start assuming that -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - - are also integers. - The replacement suggested is given directly by Equation 21, - and we get -\begin_inset Formula -\begin{align*} -S & \coloneqq\sum_{k}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r+k}{m+n}\\ - & =\sum_{k}\sum_{j}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r}{m+n-j}\binom{k}{j} & \text{Eq. (21)}\\ - & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\sum_{k}\binom{n+r-s}{n-k}\binom{m-r+s-j}{k-j} & \text{Eq. (20)}\\ - & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\sum_{k}\binom{n+r-s}{k+r-s}\binom{m-r+s-j}{k-j} & \text{Eq. (6)*}\\ - & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\binom{m+n-j}{n-j} & \text{Eq. (22)*}\\ - & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\binom{m+n-j}{m} & \text{Eq. (6)**}\\ - & =\binom{r}{m}\sum_{j}\binom{m-r+s}{j}\binom{r-m}{n-j} & \text{Eq. (20)}\\ - & =\binom{r}{m}\binom{s}{n}. -\end{align*} - -\end_inset - - In (**), - we use that, - for nonzero addends, - -\begin_inset Formula $m+n-j\geq0$ -\end_inset - - and therefore we can apply Equation 6. - In (*), - we assume -\begin_inset Formula $s\leq m-r$ -\end_inset - -. - This is not important, - since, - by the reasoning about polynomials, - this has been proved for infinite values of -\begin_inset Formula $r$ -\end_inset - - and infinite values of -\begin_inset Formula $s$ -\end_inset - - and therefore applies to all -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc36[M10] -\end_layout - -\end_inset - -What is the sum -\begin_inset Formula $\sum_{k}\binom{n}{k}$ -\end_inset - - of the numbers in each row of Pascal's triangle? - What is the sum of these numbers with alternating signs, - -\begin_inset Formula $\sum_{k}\binom{n}{k}(-1)^{k}$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -If -\begin_inset Formula $n\geq0$ -\end_inset - -, -\begin_inset Formula -\begin{align*} -\sum_{k}\binom{n}{k}=\sum_{k}\binom{n}{k}1^{k}1^{n-k} & =(1+1)^{n}=2^{n},\\ -\sum_{k}\binom{n}{k}(-1)^{k}=\sum_{k}\binom{n}{k}(-1)^{k}1^{n-k} & =(1-1)^{n}=0^{n}=\delta_{n0}. -\end{align*} - -\end_inset - -If -\begin_inset Formula $n<0$ -\end_inset - - the value is generally undefined, - as evidenced by Exercise 6. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc37[M10] -\end_layout - -\end_inset - -From the answers to the preceding exercise, - deduce the value of the sum of every other entry in a row, - -\begin_inset Formula $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\dots$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula -\[ -\sum_{k}\binom{n}{2k}=\sum_{k}\binom{n}{k}[k\text{ even}]=\sum_{k}\binom{n}{k}\frac{1+(-1)^{k}}{2}=\frac{2^{n}+\delta_{n0}}{2}=\left\{ \begin{array}{rl} -1, & n=0;\\ -2^{n-1}, & n>0. -\end{array}\right. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc39[M10] -\end_layout - -\end_inset - -What is the sum -\begin_inset Formula $\sum_{k}\stirla nk$ -\end_inset - - of the numbers in each row of Stirling's first triangle? - What is the sum of these numbers with alternating signs? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We can use Equation 44: -\end_layout - -\begin_layout Standard -\begin_inset Formula -\begin{multline*} -\sum_{k}\stirla nk=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk(-1)^{k}=(-1)^{n}(-1)^{\underline{n}}=\\ -=(-1)^{n}(-1)(-2)\cdots(-n)=n!, -\end{multline*} - -\end_inset - - -\begin_inset Formula -\[ -\sum_{k}\stirla nk(-1)^{k}=\sum_{k}\stirla nk(-1)^{-k}=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk1^{k}=(-1)^{n}1^{\underline{n}}=\delta_{n0}-\delta_{n1}. -\] - -\end_inset - -The first equation makes sense, - as it is the number of permutations of -\begin_inset Formula $n$ -\end_inset - - symbols irrespective of the number -\begin_inset Formula $k$ -\end_inset - - of cycles. - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc42[HM10] -\end_layout - -\end_inset - -Express the binomial coefficient -\begin_inset Formula $\binom{r}{k}$ -\end_inset - - in terms of the beta function defined above. - (This gives us a way to extend the definition to all real values of -\begin_inset Formula $k$ -\end_inset - -.) -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -For integers -\begin_inset Formula $r\geq0$ -\end_inset - - and -\begin_inset Formula $k\neq0$ -\end_inset - -, - -\begin_inset Formula -\[ -\binom{r}{k}=\frac{r!}{k!(r-k)!}=\frac{\Gamma(r+1)}{\Gamma(k+1)\Gamma(r-k)}=\frac{\Gamma(r+1)}{k\Gamma(k)\Gamma(r-k+1)}=(kB(k,r-k+1))^{-1}. -\] - -\end_inset - -We can extend this function to the points where it is not defined by taking limits. -\end_layout - -\begin_layout Standard -We are not required to evaluate the domain of this function, - but we have to see that it matches our definition for -\begin_inset Formula $r\in\mathbb{R}$ -\end_inset - - and -\begin_inset Formula $k\in\mathbb{Z}$ -\end_inset - -. - For -\begin_inset Formula $k\in\mathbb{N}$ -\end_inset - -, - we first see that -\begin_inset Formula -\begin{multline*} -\lim_{(x,y)\to(r,k)}\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}=\lim_{(x,y)\to(r,k)}\frac{\lim_{m}\frac{m^{x-y}m!}{(x-y+1)\cdots(x-y+m)}}{\lim_{m}\frac{m^{x-k}m!}{(x-k+1)\cdots(x-k+m)}}=\\ -=\lim_{(x,y)\to(r,k)}\lim_{m}m^{k-y}\prod_{i=1}^{m}\frac{x+m-y}{x+m-k}=1, -\end{multline*} - -\end_inset - -where I don't remember enough of my calculus lessons to know why the last step is correct but it has to do with exchanging limits. - With this, - if we successively apply the fact that -\begin_inset Formula $\Gamma(x+1)=x\Gamma(x)$ -\end_inset - -, - -\begin_inset Formula -\begin{multline*} -\lim_{(x,y)\to(r,k)}\frac{\Gamma(x+1)}{y\Gamma(y)\Gamma(x-y+1)}=\lim_{(x,y)\to(r,k)}\frac{x(x-1)\cdots(x-k+1)}{y\Gamma(y)\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}}=\\ -=\frac{r(r-1)\cdots(r-k+1)}{k!}. -\end{multline*} - -\end_inset - -If -\begin_inset Formula $k\in\mathbb{Z}^{-}$ -\end_inset - -, - for -\begin_inset Formula $r\notin\mathbb{Z}^{-}$ -\end_inset - -, - -\begin_inset Formula $\Gamma(r+1)$ -\end_inset - - is bounded in an open set around -\begin_inset Formula $(r,k)$ -\end_inset - -, - and since -\begin_inset Formula $\Gamma$ -\end_inset - - is continuous and has no zeros, - the denominator tends to infinity, - so the corresponding limit correctly evaluates to 0. - If -\begin_inset Formula $k,r\in\mathbb{Z}^{-}$ -\end_inset - - I can't find if the value is defined, - but if it is then its value is 0. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc44[HM20] -\end_layout - -\end_inset - -Using the generalized binomial coefficient suggested in exercise 42, - show that -\begin_inset Formula -\[ -\binom{r}{1/2}=2^{2r+1}\bigg/\binom{2r}{r}\pi. -\] - -\end_inset - - -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -From the definition, -\begin_inset Formula -\[ -\binom{r}{\frac{1}{2}}=\frac{1}{\frac{1}{2}B(\frac{1}{2},r+\frac{1}{2})}=\frac{2\Gamma(r+1)}{\Gamma(\frac{1}{2})\Gamma(r+\frac{1}{2})}. -\] - -\end_inset - -Now, - we know -\begin_inset Formula $\frac{\sqrt{\pi}}{2}=(\frac{1}{2})!=\frac{1}{2}\Gamma(\frac{1}{2})$ -\end_inset - -, - so -\begin_inset Formula $\Gamma(\frac{1}{2})=\sqrt{\pi}$ -\end_inset - - and -\begin_inset Formula -\[ -\binom{r}{\frac{1}{2}}=\frac{2r!}{\sqrt{\pi}(r-\frac{1}{2})(r-\frac{3}{2})\cdots(\frac{1}{2})\sqrt{\pi}}=\frac{2r!2^{r}}{\pi(2r-1)(2r-3)\cdots1}. -\] - -\end_inset - -We see that -\begin_inset Formula $(2r)!=((2r)(2r-2)\cdots2)((2r-1)(2r-3)\cdots1)$ -\end_inset - -. - We already have the second factor, - and the first one is precisely -\begin_inset Formula $2^{r}r!$ -\end_inset - -, - so we multiply both numerator and denominator by this factor to get that -\begin_inset Formula -\[ -\binom{r}{\frac{1}{2}}=\frac{2r!2^{r}2^{r}r!}{\pi(2r)!}=\frac{2^{2r+1}}{\binom{2r}{r}\pi}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc46[M21] -\end_layout - -\end_inset - -Using Stirling's approximation, - Eq. - 1.2.5–(7), - find an approximate value of -\begin_inset Formula $\binom{x+y}{y}$ -\end_inset - -, - assuming that both -\begin_inset Formula $x$ -\end_inset - - and -\begin_inset Formula $y$ -\end_inset - - are large. - In particular, - find the approximate size of -\begin_inset Formula $\binom{2n}{n}$ -\end_inset - - when -\begin_inset Formula $n$ -\end_inset - - is large. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -For large -\begin_inset Formula $x$ -\end_inset - - and -\begin_inset Formula $y$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\binom{x+y}{y}=\frac{(x+y)!}{x!y!}\approx\frac{\sqrt{2\pi(x+y)}\left(\frac{x+y}{\text{e}}\right)^{x+y}}{\sqrt{2\pi x}\sqrt{2\pi y}\left(\frac{x}{\text{e}}\right)^{x}\left(\frac{y}{\text{e}}\right)^{y}}=\sqrt{\frac{x+y}{2\pi xy}}\left(\frac{(x+y)^{x+y}}{x^{x}y^{y}}\right)=\\ -=\frac{(x+y)^{x+y+\nicefrac{1}{2}}}{\sqrt{2\pi}x^{x+\nicefrac{1}{2}}y^{y+\nicefrac{1}{2}}}=\sqrt{\frac{1}{2\pi}\left(\frac{1}{x}+\frac{1}{y}\right)}\left(1+\frac{y}{x}\right)^{x}\left(1+\frac{x}{y}\right)^{y}. -\end{multline*} - -\end_inset - -Then, - for large -\begin_inset Formula $n$ -\end_inset - -, -\begin_inset Formula -\[ -\binom{2n}{n}=\frac{(2n)^{2n+\nicefrac{1}{2}}}{\sqrt{2\pi}n^{2n+1}}=\frac{2^{2n}\sqrt{2}n^{2n}\sqrt{n}}{\sqrt{2\pi}n^{2n}n}=\frac{4^{n}}{\sqrt{\pi n}}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc48[M25] -\end_layout - -\end_inset - -Show that -\begin_inset Formula -\[ -\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\frac{n!}{x(x+1)\cdots(x+n)}=\frac{1}{x\binom{n+x}{n}}, -\] - -\end_inset - -if the denominators are not zero. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The second equality is obvious. - For the first one, - since the way the formula is written assumes -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -, - we can prove this by induction. - For -\begin_inset Formula $n=0$ -\end_inset - -, -\begin_inset Formula -\[ -\sum_{k\geq0}\binom{0}{k}\frac{(-1)^{k}}{k+x}=\frac{1}{x}=\frac{0!}{x}. -\] - -\end_inset - -For -\begin_inset Formula $n>0$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k-1}\frac{(-1)^{k}}{k+x}=\\ -=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k+1}}{k+1+x}=\frac{1}{x\binom{n-1+x}{n-1}}-\frac{1}{(x+1)\binom{n+x}{n-1}}=\\ -=\frac{(n-1)!}{x(x+1)\cdots(x+n-1)}-\frac{(n-1)!}{(x+1)(x+2)\cdots(x+n)}=\frac{(n-1)!((\cancel{x+}n)\cancel{-x})}{x(x+1)\cdots(x+n)}. -\end{multline*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc57[M22] -\end_layout - -\end_inset - -Show that the coefficient -\begin_inset Formula $a_{m}$ -\end_inset - - in Stirling's attempt at generalizing the factorial function, - Eq. - 1.2.5–(12), - is -\begin_inset Formula -\[ -\frac{(-1)^{m}}{m!}\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k. -\] - -\end_inset - -Also find -\begin_inset Formula $q$ -\end_inset - --nomial generalizations of the fundamental identities (17) and (21). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The sum in Stirling's attempt is -\begin_inset Formula -\begin{eqnarray*} -S_{n} & = & \sum_{k\geq0}a_{k+1}\prod_{j=0}^{k}(n-j)=\sum_{m\geq1}a_{m}\prod_{j=0}^{m-1}(n-j)\\ - & = & \sum_{m\geq1}\frac{(-1)^{m}}{m!}\left(\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k\right)\prod_{j=0}^{m-1}(n-j)\\ - & = & \sum_{k\geq1}\left(\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\right)\ln k. -\end{eqnarray*} - -\end_inset - -There are several things happening in the last line. - First, - note that both sums are bounded, - for -\begin_inset Formula $m$ -\end_inset - - must be at most -\begin_inset Formula $n$ -\end_inset - - because otherwise the product would contain a factor -\begin_inset Formula $n-n=0$ -\end_inset - -, - and -\begin_inset Formula $k$ -\end_inset - - must be lower than -\begin_inset Formula $m$ -\end_inset - -, - and therefore lower than -\begin_inset Formula $n$ -\end_inset - -, - because otherwise the factor -\begin_inset Formula $\binom{m-1}{k-1}$ -\end_inset - - would be 0. - This allows us to swap the sums and extract a factor that only depends on -\begin_inset Formula $k$ -\end_inset - -. - Moreover, -\begin_inset Formula -\[ -\frac{\prod_{j=0}^{m-1}(n-j)}{m!}=\frac{\prod_{j=1}^{m}(n-j+1)}{\prod_{j=1}^{m}j}=\binom{n}{m}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Let -\begin_inset Formula $A_{k}$ -\end_inset - - be the value of the inner sum for a given -\begin_inset Formula $k$ -\end_inset - -, - we know that -\begin_inset Formula $A_{k}=0$ -\end_inset - - for -\begin_inset Formula $k>n$ -\end_inset - -, - and if we prove that -\begin_inset Formula $A_{k}=1$ -\end_inset - - for -\begin_inset Formula $k\leq n$ -\end_inset - -, - we would have -\begin_inset Formula -\[ -S_{n}=\sum_{k=1}^{n}\ln k=\ln\prod_{k=1}^{n}k=\ln n! -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Now, - we have -\begin_inset Formula -\begin{align*} -A_{k} & =\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\\ - & =\sum_{m}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}-(-1)^{k}\binom{-1}{k-1} & (*)\\ - & =\sum_{m}(-1)^{n-m-k}\binom{n}{n-m}\binom{n-m-1}{k-1}+1 & (**)\\ - & =-\sum_{m}(-1)^{n-m}\binom{n}{m}\binom{k-1-n+m}{k-1}+1 & \text{Rules B, G}\\ - & =-\binom{k-1-n}{k-1-n}+1=1, & \text{Eq. (23)} -\end{align*} - -\end_inset - -where in -\begin_inset Formula $(*)$ -\end_inset - - we expand the domain of -\begin_inset Formula $m$ -\end_inset - - to all integers and subtract the case when -\begin_inset Formula $m=0$ -\end_inset - - to compensate for that (this is the only nonzero term that wasn't considered already) and in -\begin_inset Formula $(**)$ -\end_inset - - we change -\begin_inset Formula $m$ -\end_inset - - to -\begin_inset Formula $n-m$ -\end_inset - -. -\end_layout - -\begin_layout Standard -For the second part of the exercise, - we start by writing the identities (17) and (21) in -\begin_inset Formula $q$ -\end_inset - --nomial notation. - For (17), - this would be -\begin_inset Formula -\begin{eqnarray*} -\binom{r}{k,r-k}=(-1)^{k}\binom{k-r-1}{k,-r-1}, & \text{ or } & \binom{a+b}{a,b}=(-1)^{a}\binom{-b-1}{a,-(a+b)-1}. -\end{eqnarray*} - -\end_inset - -That is, - this allows us to change the sum on top to something resembling just one of the numbers that were on the bottom part. - To generalize this, -\begin_inset Formula -\begin{align*} -\binom{k_{1}+\dots+k_{m}}{k_{1},\dots,k_{m}} & =\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m}}{k_{1}+\dots+k_{m-1}}\\ - & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m-1}}{k_{1}+\dots+k_{m-2}}\binom{-k_{m}-1}{k_{1}+\dots+k_{m-1}}\\ - & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{-k_{m}-1}{k_{1},\dots,k_{m-1},-(k_{1}+\dots+k_{m})-1}. -\end{align*} - -\end_inset - -We are abusing notation here, - since the book only defines multinomial coefficients for -\begin_inset Formula $k_{i}\geq0$ -\end_inset - -, - but we can define them for any -\begin_inset Formula $k_{i}\in\mathbb{Z}$ -\end_inset - - by using the property that relates them to binomial coefficients, - at the cost of symmetry with respect to the order of the -\begin_inset Formula $k_{i}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -For (21), - this would be -\begin_inset Formula -\[ -\sum_{k}\binom{r}{k,r-k}\binom{s}{n-k,s-n+k}=\binom{r+s}{n,r+s-n}. -\] - -\end_inset - -That is, - in this case we would add up all the numbers on each component. - This clearly holds if we place -\begin_inset Formula $k,r-k$ -\end_inset - - and -\begin_inset Formula $n-k,s-n+k$ -\end_inset - - as the two last components of the multinomial coefficient. - There must be a better (less silly) generalization but I've already spent way too much time in this exercise. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc60[M23] -\end_layout - -\end_inset - -We have seen that -\begin_inset Formula $\binom{n}{k}$ -\end_inset - - is the number of combinations of -\begin_inset Formula $n$ -\end_inset - - things, - -\begin_inset Formula $k$ -\end_inset - - at a time, - namely the number of ways to choose -\begin_inset Formula $k$ -\end_inset - - different things out of a set of -\begin_inset Formula $n$ -\end_inset - -. - The -\emph on -combinations with repetitions -\emph default - are similar to ordinary combinations, - except that we may choose each object any number of times. - Thus, - the list (1) would be extended to include also -\begin_inset Formula $aaa$ -\end_inset - -, - -\begin_inset Formula $aab$ -\end_inset - -, - -\begin_inset Formula $aac$ -\end_inset - -, - -\begin_inset Formula $aad$ -\end_inset - -, - -\begin_inset Formula $aae$ -\end_inset - -, - -\begin_inset Formula $abb$ -\end_inset - -, - etc., - if we were considering combinations with repetition. - How many -\begin_inset Formula $k$ -\end_inset - --combinations of -\begin_inset Formula $n$ -\end_inset - - objects are there, - if repetition is allowed? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We can draw a bijection between -\begin_inset Formula $k$ -\end_inset - --combinations of -\begin_inset Formula $\{1,\dots,n\}$ -\end_inset - - with repetition and -\begin_inset Formula $k$ -\end_inset - --combinations of -\begin_inset Formula $\{1,\dots,n+k-1\}$ -\end_inset - - without repetition by the following assignment: -\begin_inset Formula -\begin{eqnarray*} -1\leq a_{1}\leq a_{2}\leq\dots\leq a_{k}\leq n & \mapsto & 1\leq a_{1}<a_{2}+1<\dots<a_{k}+k-1\leq n+k-1\\ -1\leq b_{1}\leq b_{2}-1\leq\dots\leq b_{k}-k+1\leq n & \mapsfrom & 1\leq b_{1}<b_{2}<\dots<b_{k}\leq n+k-1 -\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -Thus the answer is -\begin_inset Formula -\[ -\binom{n+k-1}{k}=(-1)^{k}\binom{-n}{k}=\frac{n^{\overline{k}}}{k!}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc62[M23] -\end_layout - -\end_inset - -The text gives formulas for sums involving a product of two binomial coefficients. - Of the sums involving a product of three binomial coefficients, - the following one and the identity of exercise 31 seem to be the most useful: -\begin_inset Formula -\begin{align*} -\sum_{k}(-1)^{k}\binom{l+m}{l+k}\binom{m+n}{m+k}\binom{n+l}{n+k} & =\frac{(l+m+n)!}{l!m!n!}, & \text{integer }l,m,n & \geq0. -\end{align*} - -\end_inset - -(The sum includes both positive and negative values of -\begin_inset Formula $k$ -\end_inset - -.) Prove this identity. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Note Greyedout -status open - -\begin_layout Plain Layout -(Looking at the solution.) -\end_layout - -\end_inset - -We may assume that -\begin_inset Formula $l\leq m,n$ -\end_inset - -, - since we can always rename coefficients to make it this way. - Then the application of the identity in exercise 31 is actually from right to left: - we add a new variable -\begin_inset Formula $j$ -\end_inset - -, - change the last factor -\begin_inset Formula $\binom{n+l}{n+k}$ -\end_inset - - to -\begin_inset Formula $\binom{n+k}{l-k}$ -\end_inset - - by symmetry, - and apply the aforementioned exercise to the last two factors to get that -\begin_inset Formula -\[ -S\coloneqq\sum_{k}(-1)^{k}\binom{l+m}{l+k}\binom{m+n}{m+k}\binom{n+l}{n+k}=\sum_{j,k}(-1)^{k}\binom{l+m}{k+l}\binom{k+l}{j}\binom{m-k}{l-k-j}\binom{m+n+j}{m+l}. -\] - -\end_inset - -Using that in general -\begin_inset Formula $\binom{n}{k}=0$ -\end_inset - - for -\begin_inset Formula $n\geq0$ -\end_inset - - and -\begin_inset Formula $k\notin\{0,\dots,n\}$ -\end_inset - -, - nonzero addends here must follow -\begin_inset Formula -\begin{align*} --l & \leq k\leq m, & -m & \leq k\leq n, & -n & \leq k\leq l, & 0 & \leq j\leq l+k, & l-m & \leq j\leq l-k; -\end{align*} - -\end_inset - -that is, - -\begin_inset Formula $\vert k\vert\leq\min\{m,n,l\}$ -\end_inset - - and -\begin_inset Formula $\max\{l-m,0\}\leq j\leq l-\vert k\vert$ -\end_inset - -, - which simplifies to -\begin_inset Formula $\vert k\vert\leq l$ -\end_inset - - and -\begin_inset Formula $0\leq j\leq l-\vert k\vert$ -\end_inset - - using the conditions at the beginning and then to only -\begin_inset Formula $0\leq j\leq l-\vert k\vert$ -\end_inset - -. -\end_layout - -\begin_layout Standard -This means that, - in all the binomial coefficients in the right hand side of the above equation, - the upper and lower parts are non-negative, - so we can substitute them to fractions of coefficients and, - after canceling out, - we get -\begin_inset Formula -\begin{align*} -S & =\sum_{0\leq j\leq l-\vert k\vert}(-1)^{k}\frac{(m+n+j)!}{j!(l+k-j)!(l-k-j)!(m-l+j)!(n-l+j)!}\\ - & =\sum_{0\leq j\leq l}\sum_{\vert k\vert\leq l-j}(-1)^{k}\binom{2l-2j}{l+k-j}\frac{(m+n+j)!}{(2l-2j)!j!(m-l+j)!(n-l+j)!}, -\end{align*} - -\end_inset - -but then the sum of -\begin_inset Formula $(-1)^{k}\binom{2l-2j}{l+k-j}$ -\end_inset - - across all -\begin_inset Formula $k$ -\end_inset - - is 0 unless -\begin_inset Formula $j=l$ -\end_inset - -, - so we just take the term with -\begin_inset Formula $j=l$ -\end_inset - - and -\begin_inset Formula $k=0$ -\end_inset - - to get -\begin_inset Formula -\[ -S=(-1)^{0}\binom{2l-2l}{l+0-l}\frac{(m+n+l)!}{(2l-2l)!l!(m-l+l)!(n-l+l)!}=\frac{(l+m+n)!}{l!m!n!}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc64[M20] -\end_layout - -\end_inset - -Show that -\begin_inset Formula $\stirlb nm$ -\end_inset - - is the number of ways to partition a set of -\begin_inset Formula $n$ -\end_inset - - elements into -\begin_inset Formula $m$ -\end_inset - - nonempty disjoint subsets. - For example, - the set -\begin_inset Formula $\{1,2,3,4\}$ -\end_inset - - can be partitioned into two subsets in -\begin_inset Formula $\stirlb 42=7$ -\end_inset - - ways: - -\begin_inset Formula $\{1,2,3\}\{4\}$ -\end_inset - -; - -\begin_inset Formula $\{1,2,4\}\{3\}$ -\end_inset - -; - -\begin_inset Formula $\{1,3,4\}\{2\}$ -\end_inset - -; - -\begin_inset Formula $\{2,3,4\}\{1\}$ -\end_inset - -; - -\begin_inset Formula $\{1,2\}\{3,4\}$ -\end_inset - -; - -\begin_inset Formula $\{1,3\}\{2,4\}$ -\end_inset - -; - -\begin_inset Formula $\{1,4\}\{2,3\}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Let -\begin_inset Formula $n,m\in\mathbb{N}$ -\end_inset - -, - we prove this by induction in -\begin_inset Formula $n$ -\end_inset - - and -\begin_inset Formula $m$ -\end_inset - -. - For -\begin_inset Formula $n=0$ -\end_inset - -, - there is -\begin_inset Formula $1=\stirlb 00$ -\end_inset - - way to partition -\begin_inset Formula $\emptyset$ -\end_inset - - into 0 nonempty disjoint subsets and -\begin_inset Formula $0=\stirlb 0m$ -\end_inset - - ways to partition it into -\begin_inset Formula $m\geq1$ -\end_inset - - nonempty subsets, - which matches Equation 48. - For -\begin_inset Formula $m=0$ -\end_inset - - and -\begin_inset Formula $n\geq1$ -\end_inset - -, - there are -\begin_inset Formula $0=\stirlb n0$ -\end_inset - - ways to divide a set of -\begin_inset Formula $n$ -\end_inset - - elements into 0 nonempty subsets. - -\end_layout - -\begin_layout Standard -Now, - for the induction step, - if -\begin_inset Formula $n\geq1$ -\end_inset - - and -\begin_inset Formula $m\geq1$ -\end_inset - -, - a partition of a set like -\begin_inset Formula $\{1,\dots,n\}$ -\end_inset - - into nonempty subsets can be thought of as a partition of -\begin_inset Formula $\{1,\dots,n-1\}$ -\end_inset - - to which -\begin_inset Formula $n$ -\end_inset - - has been added either to one of the elements of a partition or in a separate singleton set. - If the partition of -\begin_inset Formula $\{1,\dots,n\}$ -\end_inset - - has -\begin_inset Formula $m$ -\end_inset - - nonempty subsets, - for the first option we might add -\begin_inset Formula $n$ -\end_inset - - to any of the subsets of a partition of -\begin_inset Formula $\{1,\dots,n-1\}$ -\end_inset - - with -\begin_inset Formula $m$ -\end_inset - - subsets, - and for the second one, - we would need a partition of -\begin_inset Formula $\{1,\dots,n-1\}$ -\end_inset - - with -\begin_inset Formula $m-1$ -\end_inset - - subsets. - Thus we would need -\begin_inset Formula -\[ -\stirlb nm=m\stirlb{n-1}m+\stirlb{n-1}{m-1}, -\] - -\end_inset - -but this is precisely Equation 46. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc67[M20] -\end_layout - -\end_inset - -We often need to know that binomial coefficients aren't too large. - Prove the easy-to-remember upper bound -\begin_inset Formula -\begin{align*} -\binom{n}{k} & \leq\left(\frac{n\text{e}}{k}\right)^{k}, & \text{when }n\geq k & \geq0. -\end{align*} - -\end_inset - - -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -From Exercise 1.2.5–21, - if -\begin_inset Formula $k\geq1$ -\end_inset - -, - then -\begin_inset Formula $k!\geq\frac{k^{k}}{\text{e}^{k-1}}$ -\end_inset - -, - so -\begin_inset Formula -\[ -\binom{n}{k}=\frac{n(n-1)\cdots(n-k+1)}{k!}\leq\frac{n(n-1)\cdots(n-k+1)}{\frac{k^{k}}{\text{e}^{k-1}}}\leq\frac{n^{k}\text{e}^{k-1}}{k^{k}}\leq\left(\frac{n\text{e}}{k}\right)^{k}. -\] - -\end_inset - -For -\begin_inset Formula $k=0$ -\end_inset - -, -\begin_inset Formula -\[ -\lim_{k\to0}\left(\frac{n\text{e}}{k}\right)^{k}=\lim_{k\to\infty}\sqrt[k]{n\text{e}k}=1=\binom{n}{0}. -\] - -\end_inset - - -\end_layout - -\end_body -\end_document |
