diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-03-19 19:59:38 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-03-19 19:59:38 +0100 |
| commit | 5360d5786ec1eec019b5c75e97540ea9738f0652 (patch) | |
| tree | bdc30b9cdd4ca365c35e6189e31325ee92182594 | |
| parent | 242a74fc4215d3d5e02596d38d43bb96fbc59de6 (diff) | |
3.3.4 The Spectral Test
| -rw-r--r-- | 3.3.4.lyx | 781 | ||||
| -rw-r--r-- | index.lyx | 23 |
2 files changed, 804 insertions, 0 deletions
diff --git a/3.3.4.lyx b/3.3.4.lyx new file mode 100644 index 0000000..1c06b60 --- /dev/null +++ b/3.3.4.lyx @@ -0,0 +1,781 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[M10] +\end_layout + +\end_inset + +To what does the spectral test reduce in +\emph on +one +\emph default + dimension? + (In other words, + what happens when +\begin_inset Formula $t=1$ +\end_inset + +?) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +In this case +\begin_inset Formula $\nu_{1}^{-1}$ +\end_inset + + is the maximum distance between points in +\begin_inset Formula $\{x/m\}_{x=0}^{m-1}$ +\end_inset + +, + which is +\begin_inset Formula $m^{-1}$ +\end_inset + +, + so +\begin_inset Formula $\nu_{1}=m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M23] +\end_layout + +\end_inset + +Let +\begin_inset Formula $u_{11}$ +\end_inset + +, + +\begin_inset Formula $u_{12}$ +\end_inset + +, + +\begin_inset Formula $u_{21}$ +\end_inset + +, + +\begin_inset Formula $u_{22}$ +\end_inset + + be elements of a +\begin_inset Formula $2\times2$ +\end_inset + + integer matrix such that +\begin_inset Formula $u_{11}+au_{12}\equiv u_{21}+au_{22}\equiv0\pmod m$ +\end_inset + + and +\begin_inset Formula $u_{11}u_{22}-u_{21}u_{12}=m$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Prove that all integer solutions +\begin_inset Formula $(y_{1},y_{2})$ +\end_inset + + to the congruence +\begin_inset Formula $y_{1}+ay_{2}\equiv0\pmod m$ +\end_inset + + have the form +\begin_inset Formula $(y_{1},y_{2})=(x_{1}u_{11}+x_{2}u_{21},x_{1}u_{12}+x_{2}u_{22})$ +\end_inset + + for integer +\begin_inset Formula $x_{1}$ +\end_inset + +, + +\begin_inset Formula $x_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +If, + in addition, + +\begin_inset Formula $2|u_{11}u_{21}+u_{12}u_{22}|\leq u_{11}^{2}+u_{12}^{2}\leq u_{21}^{2}+u_{22}^{2}$ +\end_inset + +, + prove that +\begin_inset Formula $(y_{1},y_{2})=(u_{11},u_{12})$ +\end_inset + + minimizes +\begin_inset Formula $y_{1}^{2}+y_{2}^{2}$ +\end_inset + + over all nonzero solutions to the congruence. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Assume +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + and +\begin_inset Formula $m\in\mathbb{N}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Clearly all pairs of integers +\begin_inset Formula $(p,q)$ +\end_inset + + can be written as +\begin_inset Formula $(p,q)=z_{1}(m,0)+z_{2}(-a,1)+z_{3}(1,0)$ +\end_inset + + for some +\begin_inset Formula $z_{1},z_{2},z_{3}\in\mathbb{Z}$ +\end_inset + + with +\begin_inset Formula $0\leq z_{3}<m$ +\end_inset + +. + Moreover, + solutions to the congruence are precisely those pairs with +\begin_inset Formula $z_{3}=0$ +\end_inset + +, + and we just have to prove that +\begin_inset Formula $(m,0)$ +\end_inset + + and +\begin_inset Formula $(-a,1)$ +\end_inset + + can be expressed as an integer linear combination of +\begin_inset Formula $(u_{11},u_{12})$ +\end_inset + + and +\begin_inset Formula $(u_{21},u_{22})$ +\end_inset + +. + +\end_layout + +\begin_deeper +\begin_layout Standard +For +\begin_inset Formula $(m,0)$ +\end_inset + +, + +\begin_inset Formula $u_{22}(u_{11},u_{12})-u_{12}(u_{21},u_{22})=(m,0)$ +\end_inset + +. + For +\begin_inset Formula $(a,-1)$ +\end_inset + +, + if +\begin_inset Formula $j,k\in\mathbb{Z}$ +\end_inset + + are such that +\begin_inset Formula $u_{11}=jm-au_{12}$ +\end_inset + + and +\begin_inset Formula $u_{21}=km-au_{22}$ +\end_inset + +, + we can expand to get +\begin_inset Formula $m=u_{11}u_{22}-u_{21}u_{12}=ju_{22}m-ku_{12}m$ +\end_inset + +, + so +\begin_inset Formula $ju_{22}-ku_{12}=1$ +\end_inset + +, + and then +\begin_inset Formula $ju_{21}-ku_{11}=-aju_{22}+aku_{12}=-a(ju_{22}-ku_{12})=-a$ +\end_inset + +, + so +\begin_inset Formula $(-a,1)=-k(u_{11},u_{12})+j(u_{21},u_{22})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +If +\begin_inset Formula $x_{1},x_{2}\in\mathbb{Z}$ +\end_inset + + are not both 0, + then +\begin_inset Formula +\begin{multline*} +(x_{1}u_{11}+x_{2}u_{21})^{2}+(x_{1}u_{12}+x_{2}u_{22})^{2}=\\ +=x_{1}^{2}(u_{11}^{2}+u_{12}^{2})+x_{2}^{2}(u_{21}^{2}+u_{22}^{2})+2x_{1}x_{2}(u_{11}u_{21}+u_{21}u_{22}). +\end{multline*} + +\end_inset + +If +\begin_inset Formula $x_{1}x_{2}(u_{11}u_{21}+u_{21}u_{22})\geq0$ +\end_inset + +, + then this is greater or equal to +\begin_inset Formula +\[ +x_{1}^{2}(u_{11}^{2}+u_{12}^{2})+x_{2}^{2}(u_{21}^{2}+u_{22}^{2})\geq(x_{1}^{2}+x_{2}^{2})(u_{11}^{2}+u_{12}^{2})\geq u_{11}^{2}+u_{12}^{2}. +\] + +\end_inset + +Otherwise +\begin_inset Formula $x_{1},x_{2}\neq0$ +\end_inset + + and, + if +\begin_inset Formula $|x_{1}|\leq|x_{2}|$ +\end_inset + +, + then the above is greater than or equal to +\begin_inset Formula +\[ +x_{1}^{2}(u_{11}^{2}+u_{12}^{2}-2(u_{11}u_{21}+u_{21}u_{22}))+x_{2}^{2}(u_{21}^{2}+u_{22}^{2})\geq x_{2}^{2}(u_{21}^{2}+u_{22}^{2})\geq u_{11}^{2}+u_{12}^{2}, +\] + +\end_inset + +whereas the case with +\begin_inset Formula $|x_{1}|\geq|x_{2}|$ +\end_inset + + is analogous. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc15[M20] +\end_layout + +\end_inset + +Let +\begin_inset Formula $U$ +\end_inset + + be an integer vector satisfying (15). + How many of the +\begin_inset Formula $(t-1)$ +\end_inset + +-dimensional hyperplanes defined by +\begin_inset Formula $U$ +\end_inset + + intersect the unit hypercube +\begin_inset Formula $\{(x_{1},\dots,x_{t})\mid0\leq x_{j}<1\text{ for }1\leq j\leq t\}$ +\end_inset + +? + (This is approximately the number of hyperplanes in the family that will suffice to cover +\begin_inset Formula $L_{0}$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The hyperplanes are defined by +\begin_inset Formula $\{\{X\mid X\cdot U=q\}\}_{q\in\mathbb{Z}}$ +\end_inset + +, + so we need to find the maximum and minimum integer values for +\begin_inset Formula $X\cdot U$ +\end_inset + + when +\begin_inset Formula $X\in[0,1)^{n}$ +\end_inset + +, + which exist because +\begin_inset Formula $0\cdot U=0\in\mathbb{Z}$ +\end_inset + +. + The maximum and minimum real values when +\begin_inset Formula $X\in[0,1]^{n}$ +\end_inset + + are, + respectively, + +\begin_inset Formula $M\coloneqq u_{1}\frac{1+\text{sgn}u_{1}}{2}+\dots+u_{t}\frac{1+\text{sgn}u_{t}}{2}$ +\end_inset + + and +\begin_inset Formula $m\coloneqq u_{1}\frac{1-\text{sgn}u_{1}}{2}+\dots+u_{t}\frac{1-\text{sgn}u_{t}}{2}$ +\end_inset + +, + which happen to be integers, + so we have +\begin_inset Formula +\[ +M-m+1=u_{1}\text{sgn}u_{1}+\dots+u_{t}\text{sgn}u_{t}+1=|u_{1}|+\dots+|u_{t}|+1 +\] + +\end_inset + +hyperplanes. +\end_layout + +\begin_layout Standard +However, + one of these hyperplanes might only cover points in +\begin_inset Formula $[0,1]^{n}\setminus[0,1)^{n}$ +\end_inset + +. + This happens precisely when +\begin_inset Formula $(1,\dots,1)\cdot U=u_{1}+\dots+u_{t}$ +\end_inset + + is either +\begin_inset Formula $M$ +\end_inset + + or +\begin_inset Formula $m$ +\end_inset + +, + that is, + when all of the +\begin_inset Formula $u_{i}$ +\end_inset + + are nonnegative or nonpositive. + Thus, + the actual number of hyperplanes is +\begin_inset Formula +\[ +|u_{1}|+\dots+|u_{t}|+1-[u_{1},\dots,u_{t}\leq0]-[u_{1},\dots,u_{t}\geq0]. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc19[HM25] +\end_layout + +\end_inset + +Suppose step S5 were changed slightly, + so that a transformation with +\begin_inset Formula $q=1$ +\end_inset + + would be performed when +\begin_inset Formula $2V_{i}\cdot V_{j}=V_{j}\cdot V_{j}$ +\end_inset + +. + (Thus, + +\begin_inset Formula $q=\lfloor(V_{i}\cdot V_{j}/V_{j}\cdot V_{j})+\frac{1}{2}\rfloor$ +\end_inset + + whenever +\begin_inset Formula $i\neq j$ +\end_inset + +.) Would it still be possible for Algorithm S to get into an infinite loop? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +No. + If +\begin_inset Formula $2|V_{i}\cdot V_{j}|>V_{j}\cdot V_{j}$ +\end_inset + + in some step, + then +\begin_inset Formula +\[ +(V_{i}-qV_{j})\cdot(V_{i}-qV_{j})=V_{i}\cdot V_{i}-2qV_{i}\cdot V_{j}+V_{j}\cdot V_{j}<V_{i}\cdot V_{i}, +\] + +\end_inset + +because +\begin_inset Formula $q$ +\end_inset + + has the same sign as +\begin_inset Formula $V_{i}\cdot V_{j}$ +\end_inset + + and therefore +\begin_inset Formula $V_{j}\cdot V_{j}<2|V_{i}\cdot V_{j}|\leq2qV_{i}\cdot V_{j}$ +\end_inset + +, + so +\begin_inset Formula $V_{i}\cdot V_{i}$ +\end_inset + + decreases and, + since it is an integer, + it cannot decrease for infinitely many steps. + Thus, + an infinite loop would eventually only contain steps where +\begin_inset Formula $2V_{i}\cdot V_{j}=V_{j}\cdot V_{j}$ +\end_inset + +, + which are the ones we allow now, + and since there are only finitely many integer vectors with a given norm, + +\begin_inset Formula $V$ +\end_inset + + would have to repeat at some point. + However, + in these cases +\begin_inset Formula $q=1$ +\end_inset + +, + so the steps are equivalent to multiplying +\begin_inset Formula $V$ +\end_inset + + by an elementary matrix with 1s at the diagonal and at some other value and 0s everywhere else. + These matrices cannot result in an identity matrix when multiplying them because they don't have negative entries. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc32[M21] +\end_layout + +\end_inset + +Let +\begin_inset Formula $m_{1}=2^{31}-1$ +\end_inset + + and +\begin_inset Formula $m_{2}=2^{31}-249$ +\end_inset + + be the moduli of generator (38). +\end_layout + +\begin_layout Enumerate +Show that if +\begin_inset Formula $U_{n}=(X_{n}/m_{1}-Y_{n}/m_{2})\bmod1$ +\end_inset + +, + we have +\begin_inset Formula $U_{n}\approx Z_{n}/m_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Let +\begin_inset Formula $W_{0}=(X_{0}m_{2}-Y_{0}m_{1})\bmod m$ +\end_inset + + and +\begin_inset Formula $W_{n+1}=aW_{n}\bmod m$ +\end_inset + +, + where +\begin_inset Formula $a$ +\end_inset + + and +\begin_inset Formula $m$ +\end_inset + + have the values stated in the text following (38). + Prove that there is a simple relation between +\begin_inset Formula $W_{n}$ +\end_inset + + and +\begin_inset Formula $U_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $Z_{n}/m_{1}=(X_{n}/m_{1}-Y_{n}/m_{1})\bmod1\approx(X_{n}/m_{1}-Y_{n}/m_{2})\bmod1=U_{n}$ +\end_inset + +. + The difference is at most +\begin_inset Formula $|Y_{n}/m_{1}-Y_{n}/m_{2}|=Y_{n}\left|\frac{1}{2^{31}-1}-\frac{1}{2^{31}-249}\right|=Y_{n}\frac{248}{(2^{31}-1)(2^{31}-249)}<\frac{248}{2^{31}-1}<2^{-23}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +We have +\begin_inset Formula $mU_{0}=(X_{0}m/m_{1}-Y_{0}m/m_{2})\bmod m=(X_{0}m_{2}-Y_{0}m_{1})\bmod m=W_{0}$ +\end_inset + +, + and also +\begin_inset Formula +\begin{multline*} +U_{n+1}=(aX_{n}\bmod m_{1}/m_{1}-aY_{n}\bmod m_{2}/m_{2})\bmod1=\\ +=a(X_{n}/m_{1}-Y_{n}/m_{2})\bmod1=aU_{n}\bmod1, +\end{multline*} + +\end_inset + +so by induction +\begin_inset Formula $W_{n}\equiv mU_{n}$ +\end_inset + +. +\end_layout + +\end_body +\end_document @@ -2077,6 +2077,29 @@ A10+R25 The Spectral Test \end_layout +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "3.3.4.lyx" +literal "false" + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\family typewriter +A10+R25 +\end_layout + +\end_inset + + +\end_layout + \begin_layout Section Other Types of Random Quantities \end_layout |
