diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-04-22 19:50:31 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-04-22 19:50:31 +0200 |
| commit | 8967e3935d6281012344180893065469b29b81b7 (patch) | |
| tree | 8f900c268b2c79587faded718afc153841b97d75 | |
| parent | 24a5630b8b6ba37bd922c778e60cbf449e7a6db6 (diff) | |
3.5 What Is a Random Sequence?
| -rw-r--r-- | 3.5.lyx | 1191 | ||||
| -rw-r--r-- | index.lyx | 23 |
2 files changed, 1214 insertions, 0 deletions
@@ -0,0 +1,1191 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[10] +\end_layout + +\end_inset + +Can a periodic sequence be equidistributed? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Not if it's a real sequence, + because the period must be finite and, + if +\begin_inset Formula $0\leq x_{1}<\dots<x_{t}\leq1$ +\end_inset + + are the numbers that appear in the period, + then +\begin_inset Formula $\text{Pr}(\frac{1}{3}(2x_{1}+x_{2})\leq x<\frac{1}{3}(x_{1}+2x_{2}))=0\neq\frac{1}{3}(x_{2}-x_{1})$ +\end_inset + + (a similar proof can be made for +\begin_inset Formula $t=1$ +\end_inset + +). + If it's an integer sequence it can happen; + for example for the +\begin_inset Formula $b$ +\end_inset + +-ary sequence with period +\begin_inset Formula $0,1,2,\dots,b-1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[10] +\end_layout + +\end_inset + +Consider the periodic binary sequence 0, + 0, + 1, + 1, + 0, + 0, + 1, + 1, + +\begin_inset Formula $\dots$ +\end_inset + +. + Is it 1-distributed? + Is it 2-distributed? + Is it 3-distributed? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It is clearly 1-distributed and 2-distributed, + but not 3-distributed because +\begin_inset Quotes eld +\end_inset + +111 +\begin_inset Quotes erd +\end_inset + + never appears. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[HM22] +\end_layout + +\end_inset + +Let +\begin_inset Formula $U_{n}=(2^{\lfloor\lg(n+1)\rfloor}/3)\bmod1$ +\end_inset + +. + What is +\begin_inset Formula $\text{Pr}(U_{n}<\frac{1}{2})$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula $\lfloor\lg(n+1)\rfloor=0$ +\end_inset + + for +\begin_inset Formula $n=0$ +\end_inset + +; + 1 for +\begin_inset Formula $n=1,2$ +\end_inset + +; + 2 for +\begin_inset Formula $n=3,4,5,6$ +\end_inset + +, + 3 for +\begin_inset Formula $n=7,\dots,14$ +\end_inset + +, + etc., + so the sequence +\begin_inset Formula $(2^{\lfloor\lg(n+1)\rfloor})_{n}$ +\end_inset + + has 1 1's, + followed by 2 2's, + 4 4's, + 8 8's, + etc. + It is easy to prove by induction that, + when +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + is even, + +\begin_inset Formula $2^{k}\equiv1\bmod3$ +\end_inset + +, + and when it's odd, + +\begin_inset Formula $2^{k}\equiv2\bmod3$ +\end_inset + +, + and so +\begin_inset Formula $U_{n}<\frac{1}{2}$ +\end_inset + + precisely when +\begin_inset Formula $\lfloor\lg(n+1)\rfloor$ +\end_inset + + is even, + which is when +\begin_inset Formula $2^{k}\equiv1\bmod3$ +\end_inset + +. +\end_layout + +\begin_layout Standard +If +\begin_inset Formula $\nu(n)=|\{m\leq n\mid U_{n}<\frac{1}{2}\}|$ +\end_inset + +, + then +\begin_inset Formula $\nu(n)/n$ +\end_inset + + clearly increases when +\begin_inset Formula $n$ +\end_inset + + is between +\begin_inset Formula $2^{2k}-1$ +\end_inset + + and +\begin_inset Formula $2^{2k+1}-1$ +\end_inset + +, + and it decreases between +\begin_inset Formula $2^{2k-1}-1$ +\end_inset + + and +\begin_inset Formula $2^{2k}-1$ +\end_inset + +, + for +\begin_inset Formula $k\in\mathbb{N}^{*}$ +\end_inset + +. + The limit exists if the subsequence made from these infinite local minima and the one made from these infinite local maxima both have a limit and these limits match. +\end_layout + +\begin_layout Standard +For the maxima, + +\begin_inset Formula $\nu(1)=1$ +\end_inset + +, + +\begin_inset Formula $\nu(7)=5$ +\end_inset + +, + +\begin_inset Formula $\nu(31)=21$ +\end_inset + +, + etc. + In general, + +\begin_inset Formula +\[ +\nu(2^{2k+1}-1)=\sum_{i=0}^{k}2^{2k}=\frac{1-4^{k+1}}{1-4}=\frac{4^{k+1}-1}{3}, +\] + +\end_inset + +so +\begin_inset Formula +\[ +\lim_{k}\frac{\nu(2^{2k+1}-1)}{2^{2k+1}-1}=\frac{\frac{4^{k+1}-1}{3}}{2\cdot4^{k}-1}=\frac{1}{3}\frac{4\cdot4^{k}-1}{2\cdot4^{k}-1}=\frac{2}{3}. +\] + +\end_inset + +For the minima, + +\begin_inset Formula $\nu(3)=1$ +\end_inset + +, + +\begin_inset Formula $\nu(15)=5$ +\end_inset + +, + etc., + and in general +\begin_inset Formula $\nu(2^{2k}-1)=\nu(2^{2k-1}-1)=\frac{4^{k}-1}{3}$ +\end_inset + +, + so +\begin_inset Formula +\[ +\lim_{k}\frac{\nu(2^{2k}-1)}{2^{2k}-1}=\frac{1}{3}\frac{4^{k}-1}{4^{k}-1}=\frac{1}{3}. +\] + +\end_inset + +Since +\begin_inset Formula $\frac{1}{3}\neq\frac{2}{3}$ +\end_inset + +, + this probability is undefined. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[HM22] +\end_layout + +\end_inset + +Where was the fact that +\begin_inset Formula $m$ +\end_inset + + divides +\begin_inset Formula $q$ +\end_inset + + used in the proof of Theorem C? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +This is used for the sums in the second page of proof, + when telling the range of +\begin_inset Formula $t$ +\end_inset + +. + In particular, + it is needed when evaluating the sum over +\begin_inset Formula $t$ +\end_inset + + in Equation (22). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc11[M10] +\end_layout + +\end_inset + +Use Theorem C to prove that if a sequence +\begin_inset Formula $\langle U_{n}\rangle$ +\end_inset + + is +\begin_inset Formula $\infty$ +\end_inset + +-distributed, + so is the subsequence +\begin_inset Formula $\langle U_{2n}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Since it's +\begin_inset Formula $\infty$ +\end_inset + +-distributed, + it's also +\begin_inset Formula $(2,2k)$ +\end_inset + +-distributed for all +\begin_inset Formula $k\in\mathbb{N}^{*}$ +\end_inset + +, + so +\begin_inset Formula $\text{Pr}(u_{1}\leq U_{2n}<v_{1},\dots,u_{2k}\leq U_{2n+2k-1}<v_{2k})=(v_{1}-u_{1})\cdots(v_{k}-u_{k})$ +\end_inset + + for any +\begin_inset Formula $u_{1},v_{1},\dots,u_{k},v_{k}\in[0,1)$ +\end_inset + + with each +\begin_inset Formula $u_{i}<v_{i}$ +\end_inset + +, + and in particular, + if we let +\begin_inset Formula $u_{2},u_{4},\dots,u_{2k}=0$ +\end_inset + + and +\begin_inset Formula $v_{2},v_{4},\dots,v_{2k}=1$ +\end_inset + + we get the formula that shows that +\begin_inset Formula $\langle U_{2n}\rangle$ +\end_inset + + is +\begin_inset Formula $k$ +\end_inset + +-distributed. + And since this +\begin_inset Formula $k$ +\end_inset + + is arbitrary, + +\begin_inset Formula $\langle U_{2n}\rangle$ +\end_inset + + is +\begin_inset Formula $\infty$ +\end_inset + +-distributed. + Note that this argument applies to any +\begin_inset Formula $\langle U_{mn+j}\rangle$ +\end_inset + + with +\begin_inset Formula $m\in\mathbb{N}^{*}$ +\end_inset + + and +\begin_inset Formula $j\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc18[HM22] +\end_layout + +\end_inset + +Prove that if +\begin_inset Formula $U_{0},U_{1},\dots$ +\end_inset + + is +\begin_inset Formula $k$ +\end_inset + +-distributed, + so is the sequence +\begin_inset Formula $V_{0},V_{1},\dots$ +\end_inset + + where +\begin_inset Formula $V_{n}=\lfloor nU_{n}\rfloor/n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Take any +\begin_inset Formula $u_{1},v_{1},\dots,u_{k},v_{k}\in[0,1)$ +\end_inset + + such that each +\begin_inset Formula $u_{i}<v_{i}$ +\end_inset + +. + If +\begin_inset Formula $u_{i}\leq V_{n}<v_{i}$ +\end_inset + +, + then +\begin_inset Formula $u_{i}-\frac{1}{n}\leq U_{n}<v_{i}+\frac{1}{n}$ +\end_inset + +, + so if +\begin_inset Formula $S(n)\coloneqq\{\forall i,u_{i}\leq V_{n+i}<v_{i}\}$ +\end_inset + +, + then +\begin_inset Formula +\begin{align*} +\overline{\text{Pr}}(S(n)) & \leq\text{Pr}\left(\forall i,u_{i}-\frac{1}{n+i}\leq U_{n+i}<v_{i}+\frac{1}{n+i}\right)\\ + & \leq\text{Pr}\left(\forall i,u_{i}-\frac{1}{n}\leq U_{n+i}<v_{i}+\frac{1}{n}\right)\\ + & \leq\text{Pr}\left(\forall i,u_{i}-\frac{1}{n_{0}}\leq U_{n+i}<v_{i}+\frac{1}{n_{0}}\right) +\end{align*} + +\end_inset + +for any +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + +, + since the first finitely many terms of the sequence +\begin_inset Quotes eld +\end_inset + +don't matter, +\begin_inset Quotes erd +\end_inset + + and since +\begin_inset Formula $n_{0}$ +\end_inset + + is arbitrary, + taking limits on it we see that +\begin_inset Formula $\overline{\text{Pr}}(S(n))\leq\text{Pr}(\forall i,u_{i}\leq U_{n+i}<v_{i})=\prod_{i}(v_{i}-u_{i})$ +\end_inset + +. + Similarly, + if +\begin_inset Formula $u_{i}+\frac{1}{n}\leq U_{n}<v_{i}-\frac{1}{n}$ +\end_inset + +, + then +\begin_inset Formula $u_{i}\leq V_{n}<v_{i}$ +\end_inset + +, + so +\begin_inset Formula +\[ +\underline{\text{Pr}}(S(n))\geq\text{Pr}\left(\forall i,u_{i}+\frac{1}{n}\leq U_{n+i}<v_{i}+\frac{1}{n}\right)\geq\text{Pr}\left(\forall i,u_{i}+\frac{1}{n_{0}}\leq U_{n+i}<v_{i}-\frac{1}{n_{0}}\right), +\] + +\end_inset + +this time taking +\begin_inset Formula $n_{0}$ +\end_inset + + such that +\begin_inset Formula $\frac{1}{n_{0}}\leq v_{i}-u_{i}$ +\end_inset + + for every +\begin_inset Formula $i$ +\end_inset + +. + Again we reach the conclusion that +\begin_inset Formula $\underline{\text{Pr}}(S(n))\geq\prod_{i}(v_{i}-u_{i})$ +\end_inset + +. + We get the result by the same argument used at the end of Theorem A. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc28[HM21] +\end_layout + +\end_inset + +Use the sequence (11) to construct a +\begin_inset Formula $[0..1)$ +\end_inset + + sequence that is 3-distributed, + for which +\begin_inset Formula $\text{Pr}(U_{2n}\geq\frac{1}{2})=\frac{3}{4}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $(W_{n})_{n}$ +\end_inset + + be an +\begin_inset Formula $\infty$ +\end_inset + +-distributed real-valued sequence, + and let +\begin_inset Formula $(X_{n})_{n}$ +\end_inset + + be the 3-distributed binary sequence from (11), + then +\begin_inset Formula $(U_{n}\coloneqq\frac{1}{2}(W_{n}+1-X_{n}))_{n}$ +\end_inset + + satisfies the properties. + For if +\begin_inset Formula $0\leq u_{i}<v_{i}<1$ +\end_inset + +, + +\begin_inset Formula $i\in\{1,2,3\}$ +\end_inset + +, + and if we assume that, + for each +\begin_inset Formula $i$ +\end_inset + +, + +\begin_inset Formula $v_{i}\geq\frac{1}{2}$ +\end_inset + + implies +\begin_inset Formula $u_{i}\geq\frac{1}{2}$ +\end_inset + + (so the +\begin_inset Quotes eld +\end_inset + +rectangle +\begin_inset Quotes erd +\end_inset + + is contained in one quadrant), + then +\begin_inset Formula $u_{i}\leq U_{n}<v_{i}$ +\end_inset + + if, + and only if, + +\begin_inset Formula $\lfloor2u_{i}\rfloor=\lfloor2U_{i}\rfloor=1-X_{n}$ +\end_inset + + and +\begin_inset Formula $2u_{i}\bmod1\leq2U_{n}\bmod1=W_{n}\leq2v_{i}$ +\end_inset + +. + Since +\begin_inset Formula $W_{n}$ +\end_inset + + is +\begin_inset Formula $(16,3)$ +\end_inset + +-distributed, + the triplets +\begin_inset Formula $(W_{n},W_{n+1},W_{n+2})$ +\end_inset + + starting at positions where +\begin_inset Formula $(X_{n},X_{n+1},X_{n+2})$ +\end_inset + + has a given value have the same density as those starting at positions where it has any other value, + so +\begin_inset Formula +\begin{multline*} +\text{Pr}(\forall i,u_{i}\leq U_{n}<v_{i})=\text{Pr}(\forall i,\lfloor2u_{i}\rfloor=1-X_{n})\text{Pr}(\forall i,2u_{i}\bmod1\leq W_{n}\leq2v_{i}\bmod1)=\\ +=\frac{1}{8}\prod_{i}(2v_{i}-2u_{i})=\prod_{i}(v_{i}-u_{i}) +\end{multline*} + +\end_inset + +and the sequence is 3-distributed (the cases where some +\begin_inset Formula $\lfloor2u_{i}\rfloor\neq\lfloor2v_{i}\rfloor$ +\end_inset + + can be split into cases where this is not the case). + In addition, + +\begin_inset Formula $\text{Pr}(U_{2n}\geq\frac{1}{2})=\text{Pr}(X_{2n}=0)=\frac{3}{4}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc34[M25] +\end_layout + +\end_inset + +Define subsequence rules +\begin_inset Formula ${\cal R}_{1}$ +\end_inset + +, + +\begin_inset Formula ${\cal R}_{2}$ +\end_inset + +, + +\begin_inset Formula ${\cal R}_{3}$ +\end_inset + +, + ... + such that Algorithm W can be used with these rules to give an effective algorithm to construct a +\begin_inset Formula $[0..1)$ +\end_inset + + sequence satisfying Definition R1. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution.) +\end_layout + +\end_inset + +The +\begin_inset Quotes eld +\end_inset + +algorithm +\begin_inset Quotes erd +\end_inset + + gives us a potentially infinite amount of sequences +\begin_inset Formula $\langle U_{n}\rangle{\cal R}_{k}$ +\end_inset + + that are 1-distributed, + so we may encode the properties that we want to check for in the value +\begin_inset Formula $k$ +\end_inset + +. + Specifically, + we want to check that, + for an increasing sequence of bases +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + +, + +\begin_inset Formula $k\in\mathbb{N}^{*}$ +\end_inset + +, + and +\begin_inset Formula $a_{1},\dots,a_{k}\in\{0,\dots,b-1\}$ +\end_inset + +, + +\begin_inset Formula $U_{n-k}=a_{k},\dots,U_{n-1}=a_{1}$ +\end_inset + +, + so if, + for example, + +\begin_inset Formula $k=10^{b}10^{a_{1}}10^{a_{2}}1\cdots10a^{j}$ +\end_inset + + with each +\begin_inset Formula $a_{i}<b$ +\end_inset + +, + we may set +\begin_inset Formula ${\cal R}_{k}(x_{0},\dots,x_{n-1})=1$ +\end_inset + + if, + and only if, + +\begin_inset Formula $\lfloor bU_{n-1}\rfloor=a_{1}\land\dots\land\lfloor bU_{n-k}\rfloor=a_{k}$ +\end_inset + +. + For every other value of +\begin_inset Formula $k$ +\end_inset + +, + we may as well set +\begin_inset Formula ${\cal R}_{k}\equiv1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO 44 ( +\begin_inset Formula $<$ +\end_inset + +4pp., + +\begin_inset Formula $<$ +\end_inset + +1:53) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc44[16] +\end_layout + +\end_inset + +(I. + J. + Good.) Can a valid table of random digits contain just one misprint? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Yes; + for example, + both 23456782019372837458 and 23456782019372837459 are random. + Of course, + this is not true for any misprint, + as then all numbers would be random. + For example, + 23456782019372828221 is random but 23456782019372828222 isn't, + as it contains too many 2's. + This has been calculated with the following (terrible) code: +\end_layout + +\begin_layout Standard +\begin_inset listings +lstparams "language=Python,numbers=left,basicstyle={\footnotesize\ttfamily},breaklines=true" +inline false +status open + +\begin_layout Plain Layout + +import math +\end_layout + +\begin_layout Plain Layout + +\end_layout + +\begin_layout Plain Layout + +def israndom(digs): +\end_layout + +\begin_layout Plain Layout + + N = len(digs) +\end_layout + +\begin_layout Plain Layout + + dev = math.sqrt(N) +\end_layout + +\begin_layout Plain Layout + + for k in range(0, + math.floor(math.log10(N)) + 1): +\end_layout + +\begin_layout Plain Layout + + pos = 10**k +\end_layout + +\begin_layout Plain Layout + + expect = N/pos +\end_layout + +\begin_layout Plain Layout + + for ss in range(pos, + 2*pos): +\end_layout + +\begin_layout Plain Layout + + sb = str(ss)[1:] +\end_layout + +\begin_layout Plain Layout + + amt = len([n for n in range(len(digs)) if digs[n:n+k] == sb]) +\end_layout + +\begin_layout Plain Layout + + if abs(amt-expect) > dev: +\end_layout + +\begin_layout Plain Layout + + print( +\begin_inset Quotes eld +\end_inset + +FAIL +\begin_inset Quotes erd +\end_inset + +, + digs, + sb) +\end_layout + +\begin_layout Plain Layout + + return False +\end_layout + +\begin_layout Plain Layout + + return True +\end_layout + +\begin_layout Plain Layout + +\end_layout + +\begin_layout Plain Layout + +for x in range(123456782019372800000, + 123456790000000000000): +\end_layout + +\begin_layout Plain Layout + + if israndom(str(x)[1:]): +\end_layout + +\begin_layout Plain Layout + + print(str(x)[1:]) +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document @@ -2162,6 +2162,29 @@ A10+R25-16 What Is a Random Sequence? \end_layout +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "3.5.lyx" +literal "false" + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\family typewriter +A10+R25 +\end_layout + +\end_inset + + +\end_layout + \begin_layout Section Summary \end_layout |
