diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/2.3.4.4.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/2.3.4.4.lyx')
| -rw-r--r-- | vol1/2.3.4.4.lyx | 750 |
1 files changed, 750 insertions, 0 deletions
diff --git a/vol1/2.3.4.4.lyx b/vol1/2.3.4.4.lyx new file mode 100644 index 0000000..0172abf --- /dev/null +++ b/vol1/2.3.4.4.lyx @@ -0,0 +1,750 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[M25] +\end_layout + +\end_inset + +(A. + Cayley.) Let +\begin_inset Formula $c_{n}$ +\end_inset + + be the number of (unlabeled) oriented trees having +\begin_inset Formula $n$ +\end_inset + + leaves (namely, + vertices with in-degree zero) and having at least two subtrees at every other vertex. + Thus +\begin_inset Formula $c_{3}=2$ +\end_inset + +, + by virtue of the two trees +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{center} +\end_layout + +\begin_layout Plain Layout + + +\backslash +def +\backslash +dot#1{node(#1){ +\backslash +textbullet}} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw (0,1) +\backslash +dot R (-.5,0) +\backslash +dot A (0,0) +\backslash +dot B (.5,0) +\backslash +dot C +\end_layout + +\begin_layout Plain Layout + + (0,-1) node{}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (A) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (B) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (C) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +hfil +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw (0,1) +\backslash +dot R (-.5,0) +\backslash +dot A (.5,0) +\backslash +dot B +\end_layout + +\begin_layout Plain Layout + + (-1,-1) +\backslash +dot C (0,-1) +\backslash +dot D; +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (C) -> (A); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (D) -> (A); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (B) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (A) -> (R); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{center} +\end_layout + +\end_inset + +Find a formula analogous to (3) for the generating function +\begin_inset Formula +\[ +C(z)=\sum_{n}c_{n}z^{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Every tree has at least one leaf, + so +\begin_inset Formula $c_{0}=0$ +\end_inset + +. + This includes subtrees, + so +\begin_inset Formula $c_{1}=1$ +\end_inset + + as, + if the root weren't also a leaf, + it would have at least two children and therefore two trees. + For +\begin_inset Formula $n>1$ +\end_inset + +, + the root has a tree and various subtrees. + Let +\begin_inset Formula $j_{k}$ +\end_inset + + be the number of subtrees with +\begin_inset Formula $k$ +\end_inset + + leaves, + +\begin_inset Formula $1\leq k<n$ +\end_inset + +, + for those subtrees we may choose up to +\begin_inset Formula +\[ +\binom{c_{k}+j_{k}-1}{j_{k}} +\] + +\end_inset + +possibilities, + since these are combinations with repetition (see exercise 1.2.6–60), + so +\begin_inset Formula +\[ +c_{n}=\sum_{\begin{subarray}{c} +j_{1},\dots,j_{n-1}\geq0\\ +j_{1}+2j_{2}+\dots+(n-1)j_{n-1}=n +\end{subarray}}\binom{c_{1}+j_{1}-1}{j_{1}}\cdots\binom{c_{n-1}+j_{n-1}-1}{j_{n-1}}. +\] + +\end_inset + +Note that this is like (2) except that we have +\begin_inset Formula $n$ +\end_inset + + under the sum instead of +\begin_inset Formula $n-1$ +\end_inset + +. + Thus, + using the same identity as in the derivation of (3), +\begin_inset Formula +\begin{align*} +C(z) & =c_{0}+c_{1}z+\sum_{n\geq2}\sum_{\begin{subarray}{c} +j_{1},\dots,j_{n-1}\geq0\\ +j_{1}+2j_{2}+\dots+(n-1)j_{n-1}=n +\end{subarray}}\prod_{k=1}^{n-1}\binom{c_{k}+j_{k}-1}{j_{k}}z^{kj_{k}}\\ + & =z+\sum_{(j_{n})_{n}\in\mathbb{N}^{(\mathbb{N}^{*})}}\prod_{n\geq1}\binom{c_{n}+j_{n}-1}{j_{n}}z^{nj_{n}}-\sum_{n\geq1}c_{n}z^{n}-1\\ + & =\prod_{n\geq1}\sum_{j\geq1}\binom{c_{n}+j-1}{j}z^{nj_{n}}-C(z)+z-1\\ + & =\frac{1}{(1-z)^{c_{1}}(1-z^{2})^{c_{2}}\cdots(1-z^{n})^{c_{n}}\cdots}-C(z)+z-1, +\end{align*} + +\end_inset + +where +\begin_inset Formula $\mathbb{N}^{(\mathbb{N}^{*})}$ +\end_inset + + is the set of sequences of natural numbers starting at +\begin_inset Formula $j_{1}$ +\end_inset + + and with a finite amount of nonzero coefficients; + the subtracted term +\begin_inset Formula $\sum_{n\geq1}c_{n}z^{n}$ +\end_inset + + is there to cancel the terms which correspond to nodes having just one child, + and likewise for +\begin_inset Formula $-1$ +\end_inset + + for the term with all zeroes. +\end_layout + +\begin_layout Standard +Thus, +\begin_inset Formula +\[ +C(z)=\frac{1}{2}\left(\prod_{n\geq1}\frac{1}{(1-z^{n})^{c_{n}}}+z-1\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[M22] +\end_layout + +\end_inset + +Prove that a free tree with +\begin_inset Formula $n$ +\end_inset + + vertices and two centroids consists of two free trees with +\begin_inset Formula $n/2$ +\end_inset + + vertices, + joined by an edge. + Conversely, + if two free trees with +\begin_inset Formula $m$ +\end_inset + + vertices are joined by an edge, + we obtain a free tree with +\begin_inset Formula $2m$ +\end_inset + + vertices and two centroids. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Let +\begin_inset Formula $u$ +\end_inset + + and +\begin_inset Formula $v$ +\end_inset + + be the two centroids, + with weight +\begin_inset Formula $m$ +\end_inset + +. + If +\begin_inset Formula $u$ +\end_inset + + had weight +\begin_inset Formula $m$ +\end_inset + + from an edge that wasn't the one that leads to +\begin_inset Formula $v$ +\end_inset + +, + then +\begin_inset Formula $v$ +\end_inset + + would have weight at least +\begin_inset Formula $m+1$ +\end_inset + +, + owing to the +\begin_inset Formula $m$ +\end_inset + + nodes that stem from that edge in +\begin_inset Formula $u$ +\end_inset + + and +\begin_inset Formula $u$ +\end_inset + + itself. +\begin_inset Formula $\#$ +\end_inset + + By a similar argument, + if there were an intermediate node +\begin_inset Formula $w\neq u,v$ +\end_inset + + in the path connecting +\begin_inset Formula $u$ +\end_inset + + with +\begin_inset Formula $v$ +\end_inset + +, + its weight must necessarily be at most +\begin_inset Formula $m-1\#$ +\end_inset + +. + Therefore +\begin_inset Formula $u$ +\end_inset + + and +\begin_inset Formula $v$ +\end_inset + + are the only centroids, + they are connected with an edge and the subtrees that result from removing that edge have +\begin_inset Formula $m$ +\end_inset + + nodes each. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Let +\begin_inset Formula $u$ +\end_inset + + and +\begin_inset Formula $v$ +\end_inset + + be the two nodes that are newly connected, + then +\begin_inset Formula $u$ +\end_inset + + has weight +\begin_inset Formula $m$ +\end_inset + + because of its connection with +\begin_inset Formula $v$ +\end_inset + +, + +\begin_inset Formula $v$ +\end_inset + + has weight +\begin_inset Formula $m$ +\end_inset + + because of its connection with +\begin_inset Formula $u$ +\end_inset + +, + and any other node has weight at least +\begin_inset Formula $m+1$ +\end_inset + + because of their connection to +\begin_inset Formula $u$ +\end_inset + + and +\begin_inset Formula $v$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc14[10] +\end_layout + +\end_inset + +True or false: + The last entry, + +\begin_inset Formula $f(V_{n-1})$ +\end_inset + +, + in the canonical representation of an oriented tree is always the root of that tree. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +True. + After each removal step, + we still have a tree with the same root, + and by the end the tree has no edges and therefore it only has one node, + which is the root. + Just before that, + it only has one edge, + which must connect a direct child of the root to the root. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc21[M20] +\end_layout + +\end_inset + +Enumerate the number of labeled oriented trees in which each vertex has in-degree zero or two. + (See exercise 20 and exercise 2.3–20.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +These are precisely the 0-2-trees in exercise 2.3–20. + We know 0-2-trees always have an odd number of nodes, + say +\begin_inset Formula $2m+1$ +\end_inset + + nodes. + By the construction in the text, + these trees correspond to sequences of +\begin_inset Formula $2m$ +\end_inset + + nodes where each node that appears does so exactly twice. + There are +\begin_inset Formula $\binom{2m+1}{m}$ +\end_inset + + ways to choose which nodes +\emph on +do +\emph default + appear in the sequence, + and +\begin_inset Formula $\frac{(2m)!}{2^{m}}$ +\end_inset + + ways to arranging them (we can think of arranging +\begin_inset Formula $2m$ +\end_inset + + elements and then discarding the relative order of equal pairs of elements). + This gives us +\begin_inset Formula +\[ +\binom{2m+1}{m}(2m)!\Bigg/2^{m} +\] + +\end_inset + +labeled oriented 0-2-trees. +\end_layout + +\end_body +\end_document |
