1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc5[M25]
\end_layout
\end_inset
(A.
Cayley.) Let
\begin_inset Formula $c_{n}$
\end_inset
be the number of (unlabeled) oriented trees having
\begin_inset Formula $n$
\end_inset
leaves (namely,
vertices with in-degree zero) and having at least two subtrees at every other vertex.
Thus
\begin_inset Formula $c_{3}=2$
\end_inset
,
by virtue of the two trees
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{center}
\end_layout
\begin_layout Plain Layout
\backslash
def
\backslash
dot#1{node(#1){
\backslash
textbullet}}
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
draw (0,1)
\backslash
dot R (-.5,0)
\backslash
dot A (0,0)
\backslash
dot B (.5,0)
\backslash
dot C
\end_layout
\begin_layout Plain Layout
(0,-1) node{};
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (A) -> (R);
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (B) -> (R);
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (C) -> (R);
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
hfil
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
draw (0,1)
\backslash
dot R (-.5,0)
\backslash
dot A (.5,0)
\backslash
dot B
\end_layout
\begin_layout Plain Layout
(-1,-1)
\backslash
dot C (0,-1)
\backslash
dot D;
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (C) -> (A);
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (D) -> (A);
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (B) -> (R);
\end_layout
\begin_layout Plain Layout
\backslash
draw[->] (A) -> (R);
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
end{center}
\end_layout
\end_inset
Find a formula analogous to (3) for the generating function
\begin_inset Formula
\[
C(z)=\sum_{n}c_{n}z^{n}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Every tree has at least one leaf,
so
\begin_inset Formula $c_{0}=0$
\end_inset
.
This includes subtrees,
so
\begin_inset Formula $c_{1}=1$
\end_inset
as,
if the root weren't also a leaf,
it would have at least two children and therefore two trees.
For
\begin_inset Formula $n>1$
\end_inset
,
the root has a tree and various subtrees.
Let
\begin_inset Formula $j_{k}$
\end_inset
be the number of subtrees with
\begin_inset Formula $k$
\end_inset
leaves,
\begin_inset Formula $1\leq k<n$
\end_inset
,
for those subtrees we may choose up to
\begin_inset Formula
\[
\binom{c_{k}+j_{k}-1}{j_{k}}
\]
\end_inset
possibilities,
since these are combinations with repetition (see exercise 1.2.6–60),
so
\begin_inset Formula
\[
c_{n}=\sum_{\begin{subarray}{c}
j_{1},\dots,j_{n-1}\geq0\\
j_{1}+2j_{2}+\dots+(n-1)j_{n-1}=n
\end{subarray}}\binom{c_{1}+j_{1}-1}{j_{1}}\cdots\binom{c_{n-1}+j_{n-1}-1}{j_{n-1}}.
\]
\end_inset
Note that this is like (2) except that we have
\begin_inset Formula $n$
\end_inset
under the sum instead of
\begin_inset Formula $n-1$
\end_inset
.
Thus,
using the same identity as in the derivation of (3),
\begin_inset Formula
\begin{align*}
C(z) & =c_{0}+c_{1}z+\sum_{n\geq2}\sum_{\begin{subarray}{c}
j_{1},\dots,j_{n-1}\geq0\\
j_{1}+2j_{2}+\dots+(n-1)j_{n-1}=n
\end{subarray}}\prod_{k=1}^{n-1}\binom{c_{k}+j_{k}-1}{j_{k}}z^{kj_{k}}\\
& =z+\sum_{(j_{n})_{n}\in\mathbb{N}^{(\mathbb{N}^{*})}}\prod_{n\geq1}\binom{c_{n}+j_{n}-1}{j_{n}}z^{nj_{n}}-\sum_{n\geq1}c_{n}z^{n}-1\\
& =\prod_{n\geq1}\sum_{j\geq1}\binom{c_{n}+j-1}{j}z^{nj_{n}}-C(z)+z-1\\
& =\frac{1}{(1-z)^{c_{1}}(1-z^{2})^{c_{2}}\cdots(1-z^{n})^{c_{n}}\cdots}-C(z)+z-1,
\end{align*}
\end_inset
where
\begin_inset Formula $\mathbb{N}^{(\mathbb{N}^{*})}$
\end_inset
is the set of sequences of natural numbers starting at
\begin_inset Formula $j_{1}$
\end_inset
and with a finite amount of nonzero coefficients;
the subtracted term
\begin_inset Formula $\sum_{n\geq1}c_{n}z^{n}$
\end_inset
is there to cancel the terms which correspond to nodes having just one child,
and likewise for
\begin_inset Formula $-1$
\end_inset
for the term with all zeroes.
\end_layout
\begin_layout Standard
Thus,
\begin_inset Formula
\[
C(z)=\frac{1}{2}\left(\prod_{n\geq1}\frac{1}{(1-z^{n})^{c_{n}}}+z-1\right).
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc10[M22]
\end_layout
\end_inset
Prove that a free tree with
\begin_inset Formula $n$
\end_inset
vertices and two centroids consists of two free trees with
\begin_inset Formula $n/2$
\end_inset
vertices,
joined by an edge.
Conversely,
if two free trees with
\begin_inset Formula $m$
\end_inset
vertices are joined by an edge,
we obtain a free tree with
\begin_inset Formula $2m$
\end_inset
vertices and two centroids.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\begin_inset Formula $\implies]$
\end_inset
\end_layout
\end_inset
Let
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
be the two centroids,
with weight
\begin_inset Formula $m$
\end_inset
.
If
\begin_inset Formula $u$
\end_inset
had weight
\begin_inset Formula $m$
\end_inset
from an edge that wasn't the one that leads to
\begin_inset Formula $v$
\end_inset
,
then
\begin_inset Formula $v$
\end_inset
would have weight at least
\begin_inset Formula $m+1$
\end_inset
,
owing to the
\begin_inset Formula $m$
\end_inset
nodes that stem from that edge in
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $u$
\end_inset
itself.
\begin_inset Formula $\#$
\end_inset
By a similar argument,
if there were an intermediate node
\begin_inset Formula $w\neq u,v$
\end_inset
in the path connecting
\begin_inset Formula $u$
\end_inset
with
\begin_inset Formula $v$
\end_inset
,
its weight must necessarily be at most
\begin_inset Formula $m-1\#$
\end_inset
.
Therefore
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
are the only centroids,
they are connected with an edge and the subtrees that result from removing that edge have
\begin_inset Formula $m$
\end_inset
nodes each.
\end_layout
\begin_layout Itemize
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\begin_inset Formula $\impliedby]$
\end_inset
\end_layout
\end_inset
Let
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
be the two nodes that are newly connected,
then
\begin_inset Formula $u$
\end_inset
has weight
\begin_inset Formula $m$
\end_inset
because of its connection with
\begin_inset Formula $v$
\end_inset
,
\begin_inset Formula $v$
\end_inset
has weight
\begin_inset Formula $m$
\end_inset
because of its connection with
\begin_inset Formula $u$
\end_inset
,
and any other node has weight at least
\begin_inset Formula $m+1$
\end_inset
because of their connection to
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc14[10]
\end_layout
\end_inset
True or false:
The last entry,
\begin_inset Formula $f(V_{n-1})$
\end_inset
,
in the canonical representation of an oriented tree is always the root of that tree.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
True.
After each removal step,
we still have a tree with the same root,
and by the end the tree has no edges and therefore it only has one node,
which is the root.
Just before that,
it only has one edge,
which must connect a direct child of the root to the root.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc21[M20]
\end_layout
\end_inset
Enumerate the number of labeled oriented trees in which each vertex has in-degree zero or two.
(See exercise 20 and exercise 2.3–20.)
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
These are precisely the 0-2-trees in exercise 2.3–20.
We know 0-2-trees always have an odd number of nodes,
say
\begin_inset Formula $2m+1$
\end_inset
nodes.
By the construction in the text,
these trees correspond to sequences of
\begin_inset Formula $2m$
\end_inset
nodes where each node that appears does so exactly twice.
There are
\begin_inset Formula $\binom{2m+1}{m}$
\end_inset
ways to choose which nodes
\emph on
do
\emph default
appear in the sequence,
and
\begin_inset Formula $\frac{(2m)!}{2^{m}}$
\end_inset
ways to arranging them (we can think of arranging
\begin_inset Formula $2m$
\end_inset
elements and then discarding the relative order of equal pairs of elements).
This gives us
\begin_inset Formula
\[
\binom{2m+1}{m}(2m)!\Bigg/2^{m}
\]
\end_inset
labeled oriented 0-2-trees.
\end_layout
\end_body
\end_document
|