diff options
Diffstat (limited to '2.3.4.5.lyx')
| -rw-r--r-- | 2.3.4.5.lyx | 443 |
1 files changed, 0 insertions, 443 deletions
diff --git a/2.3.4.5.lyx b/2.3.4.5.lyx deleted file mode 100644 index 8bd484a..0000000 --- a/2.3.4.5.lyx +++ /dev/null @@ -1,443 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -TODO 3, - 4, - 12 (2pp., - 1:14) -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc3[M24] -\end_layout - -\end_inset - -An extended binary tree with -\begin_inset Formula $m$ -\end_inset - - external nodes determines a set of path lengths -\begin_inset Formula $l_{1},l_{2},\dots,l_{m}$ -\end_inset - - that describe the lengths of paths from the root to the respective external nodes. - Conversely, - if we are given a set of numbers -\begin_inset Formula $l_{1},l_{2},\dots,l_{m}$ -\end_inset - -, - is it always possible to construct an extended binary tree in which these numbers are the path lengths in some order? - Show that this is possible if and only if -\begin_inset Formula $\sum_{j=1}^{m}2^{-l_{j}}=1$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We assign each external node an interval of real numbers as follows: - start with -\begin_inset Formula $[l,u)=[0,1)$ -\end_inset - -; - then, - for each edge in the path from the root to the node, - if it's a left edge, - set -\begin_inset Formula $[l,u)\gets[l,\frac{l+u}{2})$ -\end_inset - -, - and if it's a right edge, - set -\begin_inset Formula $[l,u)\gets[\frac{l+u}{2},u)$ -\end_inset - -, - so the interval's length is -\begin_inset Formula $2^{-l}$ -\end_inset - -, - -\begin_inset Formula $l$ -\end_inset - - being the path length. - It's easy to see that these intervals are disjoint and that, - for each -\begin_inset Formula $x\in[0,1)$ -\end_inset - -, - there is a special node whose interval contains -\begin_inset Formula $x$ -\end_inset - -. - With this in mind: -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -This is precisely the sum of the lengths of the intervals, - which is 1 because -\begin_inset Formula $[0,1)$ -\end_inset - - is the disjoint union of these intervals. -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - -We just have to sort the path lengths in increasing order, - assign consecutive intervals of length -\begin_inset Formula $2^{-l_{k}}$ -\end_inset - - starting from 0 and converting the intervals to paths (more precisely, - to sequences of left/right turns), - which we can do since the increasing order ensures that the starting point -\begin_inset Formula $l_{k}$ -\end_inset - - of an interval -\begin_inset Formula $[l_{k},u_{k})$ -\end_inset - - is a multiple of the length -\begin_inset Formula $u_{k}-l_{k}$ -\end_inset - -. - These paths are all different and none is a prefix of another one, - so they define the leaves of a binary tree. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc4[M25] -\end_layout - -\end_inset - -(E. - S. - Schwartz and B. - Kallick.) Assume that -\begin_inset Formula $w_{1}\leq w_{2}\leq\dots\leq w_{m}$ -\end_inset - -. - Show that there is an extended binary tree that minimizes -\begin_inset Formula $\sum w_{j}l_{j}$ -\end_inset - - and for which the terminal nodes in left to right order contain the respective values -\begin_inset Formula $w_{1},w_{2},\dots,w_{m}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Let -\begin_inset Formula $T$ -\end_inset - - be an extended binary tree that minimizes -\begin_inset Formula $\sum w_{j}l_{j}$ -\end_inset - -. - For -\begin_inset Formula $i<j$ -\end_inset - -, - if -\begin_inset Formula $w_{i}<w_{j}$ -\end_inset - -, - then -\begin_inset Formula $l_{i}\geq l_{j}$ -\end_inset - - in that tree, - as otherwise we could reduce the weight path length by swapping their positions as -\begin_inset Formula -\[ -(w_{i}l_{j}+w_{j}l_{i})-(w_{i}l_{i}+w_{j}l_{j})=(w_{i}-w_{j})(l_{j}-l_{i})<0\#. -\] - -\end_inset - -Thus we might assume -\begin_inset Formula $l_{i}\geq l_{j}$ -\end_inset - - for all -\begin_inset Formula $i<j$ -\end_inset - -. - This means lengths -\begin_inset Formula $l_{1},\dots,l_{m}$ -\end_inset - - are in decreasing order, - so the proof in the previous exercise gives us a tree whose nodes, - in the order of the tree, - are -\begin_inset Formula $w_{m},\dots,w_{1}$ -\end_inset - - with lengths -\begin_inset Formula $l_{m},\dots,l_{1}$ -\end_inset - -, - and we just have to swap left and right edges in that tree. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc12[M20] -\end_layout - -\end_inset - -Suppose that a node has been chosen at random in a binary tree, - with each node equally likely. - Show that the average size of the subtree rooted at that node is related to the path length of the tree. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Let -\begin_inset Formula $V_{1},\dots,V_{m}$ -\end_inset - - be the internal nodes, - with path lengths -\begin_inset Formula $l_{1},\dots,l_{m}$ -\end_inset - -. - The average size of the subtrees is the sum of the number of nodes in each subtree divided by -\begin_inset Formula $m$ -\end_inset - -, - but in this sum, - each node -\begin_inset Formula $V_{k}$ -\end_inset - - is counted -\begin_inset Formula $l_{k}+1$ -\end_inset - - times, - one for the subtree generated by each node in the path from the root to -\begin_inset Formula $V_{k}$ -\end_inset - - including both ends of the path. - Thus this average is precisely -\begin_inset Formula -\[ -\frac{1}{m}\sum_{k}(l_{k}+1)=\frac{1}{m}(I+m)=\frac{I}{m}+1, -\] - -\end_inset - -where -\begin_inset Formula $I$ -\end_inset - - is the internal path length of the tree. -\end_layout - -\end_body -\end_document |
