1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc16[25]
\end_layout
\end_inset
Prove that it takes only
\begin_inset Formula $O(K\log K)$
\end_inset
arithmetic operations to evaluate the discrete Fourier transform (35),
even when
\begin_inset Formula $K$
\end_inset
is not a power of 2.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Let
\begin_inset Formula $n=\lceil\log K\rceil$
\end_inset
,
and assume
\begin_inset Formula $n\geq5$
\end_inset
.
Since
\begin_inset Formula $\log K>4$
\end_inset
and
\begin_inset Formula $n-\log K<1$
\end_inset
,
we have
\begin_inset Formula $\frac{n}{\log K}<\frac{5}{4}$
\end_inset
and
\begin_inset Formula
\[
2^{n}\log2^{n}=2^{n}n\leq2K\cdot\frac{5}{4}\log K=\frac{5}{2}K\log K=O(K\log K).
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc19[M23]
\end_layout
\end_inset
Show how to compute
\begin_inset Formula $uv\bmod m$
\end_inset
with a bounded number of operations that meet the ground rules of exercise 3.2.1.1–11,
if you are also allowed to test whether one operand is less than another.
Both
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
are variable,
but
\begin_inset Formula $m$
\end_inset
is constant.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
If
\begin_inset Formula $m=1$
\end_inset
,
the result is 0,
and if
\begin_inset Formula $m=2$
\end_inset
,
the result is that of multiplying the least significant bit of
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
;
either way we are done.
If
\begin_inset Formula $m=3$
\end_inset
,
we may compute
\begin_inset Formula $uv\bmod3$
\end_inset
with
\begin_inset Formula $0\leq u,v<3$
\end_inset
with the help of a table and set
\begin_inset Formula $s\coloneqq3$
\end_inset
,
and with
\begin_inset Formula $m\geq4$
\end_inset
,
there exists an integer
\begin_inset Formula $s\geq2$
\end_inset
such that
\begin_inset Formula $s^{2}\leq m$
\end_inset
,
and we take the greatest such
\begin_inset Formula $s$
\end_inset
.
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $n$
\end_inset
be such that
\begin_inset Formula $2^{2^{n-1}}\leq u,v<2^{2^{n}}$
\end_inset
,
we compute powers
\begin_inset Formula $2^{2^{m}}$
\end_inset
for
\begin_inset Formula $1\leq m\leq n$
\end_inset
.
Then,
if
\begin_inset Formula $u,v<s$
\end_inset
,
we compute the product directly;
otherwise we apply decomposition (2) and use modular arithmetic for the multiplications and additions (if we can do modular subtraction,
we can do modular addition since
\begin_inset Formula $(u+v)\bmod m=(u-(0-v)\bmod m)\bmod m$
\end_inset
).
\end_layout
\begin_layout Standard
This assumes that we have access to the bit representations of
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
,
although the solution in the book assumes we can perform integer division with a dividend greater than
\begin_inset Formula $m$
\end_inset
,
which is not a given either,
so let's call it even.
\end_layout
\end_body
\end_document
|