diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /algl/n3.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'algl/n3.lyx')
| -rw-r--r-- | algl/n3.lyx | 652 |
1 files changed, 652 insertions, 0 deletions
diff --git a/algl/n3.lyx b/algl/n3.lyx new file mode 100644 index 0000000..99baa10 --- /dev/null +++ b/algl/n3.lyx @@ -0,0 +1,652 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +ecuación lineal +\series default + en las +\begin_inset Formula $n$ +\end_inset + + +\series bold +incógnitas +\series default + +\begin_inset Formula $x_{1},\dots,x_{n}$ +\end_inset + + sobre el cuerpo +\begin_inset Formula $K$ +\end_inset + + es una expresión de la forma +\begin_inset Formula $a_{1}x_{1}+\dots+a_{n}x_{n}=b$ +\end_inset + +, con los +\begin_inset Formula $a_{i}\in K$ +\end_inset + + ( +\series bold +coeficientes +\series default +) y +\begin_inset Formula $b\in K$ +\end_inset + + ( +\series bold +término independiente +\series default +). + Un +\series bold +sistema de +\begin_inset Formula $m$ +\end_inset + + ecuaciones lineales +\series default + con +\begin_inset Formula $n$ +\end_inset + + incógnitas sobre el cuerpo +\series bold + +\begin_inset Formula $K$ +\end_inset + + +\series default + tiene la forma +\begin_inset Formula +\[ +\left.\begin{array}{ccccccc} +a_{11}x_{1} & + & \dots & + & a_{1n}x_{n} & = & b_{1}\\ + & & & & & \vdots\\ +a_{m1}x_{1} & + & \dots & + & a_{mn}x_{n} & = & b_{m} +\end{array}\right\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Puede expresarse matricialmente de la forma +\begin_inset Formula $AX=B$ +\end_inset + +, donde +\begin_inset Formula $A=(a_{ij})\in M_{m,n}(K)$ +\end_inset + + es la +\series bold +matriz de los coeficientes +\series default +, +\begin_inset Formula $B=(b_{i})\in M_{m,1}(K)$ +\end_inset + + es la +\series bold +matriz de los términos independientes +\series default + y +\begin_inset Formula $X=(x_{i})\in M_{n,1}(K)$ +\end_inset + + es la matriz de incógnitas. + A la matriz +\begin_inset Formula $(A|B)\in M_{m,n+1}(K)$ +\end_inset + + se le llama +\series bold +matriz ampliada +\series default + del sistema. + Un sistema es +\series bold +homogéneo +\series default + si +\begin_inset Formula $B=0$ +\end_inset + +, y a cada sistema +\begin_inset Formula $AX=B$ +\end_inset + + se le puede asociar el sistema homogéneo +\begin_inset Formula $AX=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Se llama +\series bold +solución +\series default + a toda +\begin_inset Formula $n$ +\end_inset + +-upla +\begin_inset Formula $(r_{1},\dots,r_{n})\in K^{n}$ +\end_inset + + tal que si +\begin_inset Formula $R=(r_{i})\in M_{n,1}(K)$ +\end_inset + + entonces +\begin_inset Formula $AR=B$ +\end_inset + +. + Un sistema es +\series bold +compatible +\series default + si tiene alguna solución, +\series bold +determinado +\series default + si tiene solo una e +\series bold +indeterminado +\series default + si tiene más; o +\series bold +incompatible +\series default + si no tiene ninguna. + +\series bold +Discutir +\series default + un sistema es determinar su compatibilidad, y +\series bold +resolverlo +\series default + es encontrar las soluciones. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Si un sistema +\begin_inset Formula $AX=B$ +\end_inset + + tiene una solución +\begin_inset Formula $P$ +\end_inset + +, todas las soluciones son de la forma +\begin_inset Formula $P+M$ +\end_inset + +, donde +\begin_inset Formula $M$ +\end_inset + + es solución de +\begin_inset Formula $AX=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Teorema de Rouché-Frobenius +\end_layout + +\begin_layout Standard +Un sistema +\begin_inset Formula $AX=B$ +\end_inset + + es compatible si y sólo si +\begin_inset Formula $\text{rang}(A)=\text{rang}(A|B)$ +\end_inset + +, en cuyo caso es determinado si +\begin_inset Formula $\text{rang}(A)=n$ +\end_inset + +. + En concreto, si +\begin_inset Formula $k=n-\text{rang}(A)>0$ +\end_inset + +, existen +\begin_inset Formula $u_{1},\dots,u_{k}$ +\end_inset + + soluciones linealmente independientes de +\begin_inset Formula $AX=0$ +\end_inset + + tales que cualquier solución del sistema es de la forma +\begin_inset Formula $x_{0}+\lambda_{1}u_{1}+\dots+\lambda_{k}u_{k}$ +\end_inset + +. + Decimos del sistema que +\series bold +depende de +\begin_inset Formula $k$ +\end_inset + + parámetros +\series default + +\begin_inset Formula $\lambda_{1},\dots,\lambda_{k}$ +\end_inset + + o que tiene +\begin_inset Formula $k$ +\end_inset + + +\series bold +grados de libertad +\series default +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Si tenemos la aplicación +\begin_inset Formula $f_{A}:K^{n}\rightarrow K^{m}$ +\end_inset + + tal que +\begin_inset Formula $A=M_{{\cal C^{0}},{\cal C}}(f)$ +\end_inset + +, entonces si +\begin_inset Formula $K^{n}=<u_{1},\dots,u_{n}>$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + + es el vector definido por +\begin_inset Formula $B$ +\end_inset + +, el conjunto de soluciones es +\begin_inset Formula $f^{-1}(v)=\{x\in K^{n}|f(x)=v\}$ +\end_inset + +. + Entonces, +\begin_inset Formula +\begin{multline*} +\exists x\in U:f(x)=v\iff v\in\text{Im}(f)\iff<f(u_{1}),\dots,f(u_{n}),v>=<f(u_{1}),\dots,f(u_{n})>\iff\\ +\iff\dim(<f(u_{1}),\dots,f(u_{n}),v>)=\dim(<f(u_{1}),\dots,f(u_{n})>)=\dim(\text{Im}(f))=\text{rang}(f) +\end{multline*} + +\end_inset + +Por tanto +\begin_inset Formula $AX=B$ +\end_inset + + es compatible si y sólo si +\begin_inset Formula $\text{rang}(A)=\text{rang}(A|B)$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $f(x_{0})=v$ +\end_inset + +, las soluciones serán +\begin_inset Formula $f^{-1}(v)=\{u\in U|f(u)=v\}=x_{0}+\text{Nuc}(f)$ +\end_inset + +. + Como además +\begin_inset Formula $\dim(K^{n})=\text{rang}(f)+\dim(\text{Nuc}(f))$ +\end_inset + +, entonces +\begin_inset Formula $k:=\dim(\text{Nuc}(f))=n-\text{rang}(f)$ +\end_inset + +, por lo que existen +\begin_inset Formula $k$ +\end_inset + + soluciones linealmente independientes de +\begin_inset Formula $AX=0$ +\end_inset + + (una base de +\begin_inset Formula $\text{Nuc}(f)$ +\end_inset + +). + Por tanto las soluciones del sistema homogéneo serán combinaciones lineales + de dicha base. +\end_layout + +\begin_layout Section +Resolución de sistemas de ecuaciones lineales. + Método de Gauss +\end_layout + +\begin_layout Standard +Dos sistemas de +\begin_inset Formula $m$ +\end_inset + + ecuaciones lineales con +\begin_inset Formula $n$ +\end_inset + + incógnitas sobre un mismo cuerpo son +\series bold +e +\begin_inset ERT +status open + +\begin_layout Plain Layout + +\series bold + +\backslash +- +\end_layout + +\end_inset + +qui +\begin_inset ERT +status open + +\begin_layout Plain Layout + +\series bold + +\backslash +- +\end_layout + +\end_inset + +va +\begin_inset ERT +status open + +\begin_layout Plain Layout + +\series bold + +\backslash +- +\end_layout + +\end_inset + +len +\begin_inset ERT +status open + +\begin_layout Plain Layout + +\series bold + +\backslash +- +\end_layout + +\end_inset + +tes +\series default + si tienen las mismas soluciones. + Si +\begin_inset Formula $P\in M_{m}(K)$ +\end_inset + +, +\begin_inset Formula $(PA)X=PB$ +\end_inset + + es equivalente a +\begin_inset Formula $AX=B$ +\end_inset + +, y en particular, si +\begin_inset Formula $E\in M_{m}(K)$ +\end_inset + + es una matriz elemental, +\begin_inset Formula $(EA)X=EB$ +\end_inset + + también lo es, por lo que al hacer operaciones elementales por filas sobre + +\begin_inset Formula $(A|B)$ +\end_inset + + se obtiene un sistema con las mismas soluciones. +\end_layout + +\begin_layout Standard +El +\series bold +método de Gauss +\series default + comienza por convertir la matriz ampliada a una escalonada reducida por + filas +\begin_inset Formula $(A'|B')$ +\end_inset + +. + Si obtenemos que +\begin_inset Formula $\text{rang}(A|B)>\text{rang}(A)$ +\end_inset + +, el sistema es incompatible. + Si +\begin_inset Formula $r=\text{rang}(A)=\text{rang}(A|B)$ +\end_inset + +, las filas nulas de +\begin_inset Formula $A'$ +\end_inset + + lo son de +\begin_inset Formula $B'$ +\end_inset + +. + Reordenamos las incógnitas, lo que equivale a reordenar las columnas de + +\begin_inset Formula $A'$ +\end_inset + +, para conseguir un sistema de la forma +\begin_inset Formula +\[ +\left(\begin{array}{c|c} +I_{r} & C\\ +\hline 0 & 0 +\end{array}\right)\left(\begin{array}{c} +y_{1}\\ +\vdots\\ +y_{r}\\ +\hline y_{r+1}\\ +\vdots\\ +y_{n} +\end{array}\right)=\left(\begin{array}{c} +b_{1}^{\prime}\\ +\vdots\\ +b_{r}^{\prime}\\ +\hline 0\\ +\vdots\\ +0 +\end{array}\right) +\] + +\end_inset + +Donde +\begin_inset Formula $y_{1},\dots,y_{n}$ +\end_inset + + son los +\begin_inset Formula $x_{1},\dots,x_{n}$ +\end_inset + + reordenados de la misma forma que las columnas. + Esto equivale a +\begin_inset Formula +\[ +I_{r}\left(\begin{array}{c} +y_{1}\\ +\vdots\\ +y_{r} +\end{array}\right)+C\left(\begin{array}{c} +y_{r+1}\\ +\vdots\\ +y_{n} +\end{array}\right)=\left(\begin{array}{c} +b_{1}^{\prime}\\ +\vdots\\ +b_{r}^{\prime} +\end{array}\right)\implies\left(\begin{array}{c} +y_{1}\\ +\vdots\\ +y_{r} +\end{array}\right)=\left(\begin{array}{c} +b_{1}^{\prime}\\ +\vdots\\ +b_{r}^{\prime} +\end{array}\right)-C\left(\begin{array}{c} +y_{r+1}\\ +\vdots\\ +y_{n} +\end{array}\right) +\] + +\end_inset + +De modo que al asignar valores arbitrarios a +\begin_inset Formula $y_{r+1},\dots,y_{n}$ +\end_inset + +, que llamamos +\series bold +incógnitas libres +\series default +, obtenemos valores de +\begin_inset Formula $y_{1},\dots,y_{r}$ +\end_inset + +, que llamamos +\series bold +incógnitas principales +\series default +. +\end_layout + +\end_body +\end_document |
