diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-05 16:01:04 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-05 16:01:04 +0200 |
| commit | 74893dc5802a6b49d30c138dd5b5fd76794bfdd1 (patch) | |
| tree | 182e5eac19f899372999405223597ae71badc7db /anm/n1.lyx | |
| parent | 0c01582cb98b52b0ef89eec0380e853a4f39039a (diff) | |
x
Diffstat (limited to 'anm/n1.lyx')
| -rw-r--r-- | anm/n1.lyx | 90 |
1 files changed, 74 insertions, 16 deletions
@@ -77,19 +77,6 @@ \begin_body -\begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -p1[7] no incluída. -\end_layout - -\end_inset - - -\end_layout - \begin_layout Section Matrices \end_layout @@ -543,8 +530,8 @@ base \begin_inset Formula $\mathbb{K}$ \end_inset - es un conjunto -\begin_inset Formula $\{v_{1},\dots,v_{n}\}$ + es una tupla +\begin_inset Formula $(v_{1},\dots,v_{n})$ \end_inset de vectores linealmente independientes de @@ -580,6 +567,31 @@ con \end_layout \begin_layout Standard +Un +\series bold +producto escalar +\series default + en un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $E$ +\end_inset + + es una función +\begin_inset Formula $\langle\cdot,\cdot\rangle:E\times E\to\mathbb{R}$ +\end_inset + + bilineal simétrica tal que +\begin_inset Formula $\forall f\in E\setminus\{0\},\langle f,f\rangle>0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard Llamamos \series bold producto escalar euclídeo @@ -678,6 +690,26 @@ ortogonales \end_layout \begin_layout Standard +Una +\series bold +norma +\series default + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + + es una aplicación +\begin_inset Formula $\Vert\cdot\Vert:V\to\mathbb{K}$ +\end_inset + + definida positiva, +\end_layout + +\begin_layout Standard Sean \begin_inset Formula $f:V\to W$ \end_inset @@ -1742,10 +1774,36 @@ espacio vectorial normado . Todas las normas en un espacio de dimensión finita son equivalentes, es decir, definen la misma topología. + \end_layout \begin_layout Standard -Llamamos +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial con un producto escalar +\begin_inset Formula $\langle\cdot,\cdot\rangle$ +\end_inset + +, +\begin_inset Formula $\Vert\cdot\Vert:E\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $\Vert f\Vert:=\sqrt{\langle f,f\rangle}$ +\end_inset + + define una norma en +\begin_inset Formula $E$ +\end_inset + +. + Llamamos \series bold norma \begin_inset Formula $p$ |
